Usage and Options
Usage:
python run_train.py [--gpu=<id>] [--view=<dset>]
python run_train.py (-h | --help)
python run_train.py --version
Options:
-h --help Show this string.
--version Show version.
--gpu=<id> Comma separated GPU list.
--view=<dset> Visualise images after augmentation. Choose 'train' or 'valid'.
Examples:
To visualise the training dataset as a sanity check before training use:
python run_train.py --view='train'
To initialise the training script with GPUs 0 and 1, the command is:
python run_train.py --gpu='0,1'
readme这一部分在教我如何使用,那我需要注意哪些问题呢,run_train.py的详细代码如下:
"""run_train.py
Main HoVer-Net training script.
Usage:
run_train.py [--gpu=<id>] [--view=<dset>]
run_train.py (-h | --help)
run_train.py --version
Options:
-h --help Show this string.
--version Show version.
--gpu=<id> Comma separated GPU list. [default: 0,1,2,3]
--view=<dset> Visualise images after augmentation. Choose 'train' or 'valid'.
"""
import cv2
cv2.setNumThreads(0)
import argparse
import glob
import importlib
import inspect
import json
import os
import shutil
import matplotlib
import numpy as np
import torch
from docopt import docopt
from tensorboardX import SummaryWriter
from torch.nn import DataParallel # TODO: switch to DistributedDataParallel
from torch.utils.data import DataLoader
from config import Config
from dataloader.train_loader import FileLoader
from misc.utils import rm_n_mkdir
from run_utils.engine import RunEngine
from run_utils.utils import (
check_log_dir,
check_manual_seed,
colored,
convert_pytorch_checkpoint,
)
#### have to move outside because of spawn
# * must initialize augmentor per worker, else duplicated rng generators may happen
def worker_init_fn(worker_id):
# ! to make the seed chain reproducible, must use the torch random, not numpy
# the torch rng from main thread will regenerate a base seed, which is then
# copied into the dataloader each time it created (i.e start of each epoch)
# then dataloader with this seed will spawn worker, now we reseed the worker
worker_info = torch.utils.data.get_worker_info()
# to make it more random, simply switch torch.randint to np.randint
worker_seed = torch.randint(0, 2 ** 32, (1,))[0].cpu().item() + worker_id
# print('Loader Worker %d Uses RNG Seed: %d' % (worker_id, worker_seed))
# retrieve the dataset copied into this worker process
# then set the random seed for each augmentation
worker_info.dataset.setup_augmentor(worker_id, worker_seed)
return
####
class TrainManager(Config):
"""Either used to view the dataset or to initialise the main training loop."""
def __init__(self):
super().__init__()
return
####
def view_dataset(self, mode="train"):
"""
Manually change to plt.savefig or plt.show
if using on headless machine or not
"""
self.nr_gpus = 1
import matplotlib.pyplot as plt
check_manual_seed(self.seed)
# TODO: what if each phase want diff annotation ?
phase_list = self.model_config["phase_list"][0]
target_info = phase_list["target_info"]
prep_func, prep_kwargs = target_info["viz"]
dataloader = self._get_datagen(2, mode, target_info["gen"])
for batch_data in dataloader:
# convert from Tensor to Numpy
batch_data = {k: v.numpy() for k, v in batch_data.items()}
viz = prep_func(batch_data, is_batch=True, **prep_kwargs)
plt.imshow(viz)
plt.show()
self.nr_gpus = -1
return
####
def _get_datagen(self, batch_size, run_mode, target_gen, nr_procs=0, fold_idx=0):
nr_procs = nr_procs if not self.debug else 0
# ! Hard assumption on file type
file_list = []
if run_mode == "train":
data_dir_list = self.train_dir_list
else:
data_dir_list = self.valid_dir_list
for dir_path in data_dir_list:
file_list.extend(glob.glob("%s/*.npy" % dir_path))
file_list.sort() # to always ensure same input ordering
assert len(file_list) > 0, (
"No .npy found for `%s`, please check `%s` in `config.py`"
% (run_mode, "%s_dir_list" % run_mode)
)
print("Dataset %s: %d" % (run_mode, len(file_list)))
input_dataset = FileLoader(
file_list,
mode=run_mode,
with_type=self.type_classification,
setup_augmentor=nr_procs == 0,
target_gen=target_gen,
**self.shape_info[run_mode]
)
dataloader = DataLoader(
input_dataset,
num_workers=nr_procs,
batch_size=batch_size * self.nr_gpus,
shuffle=run_mode == "train",
drop_last=run_mode == "train",
worker_init_fn=worker_init_fn,
)
return dataloader
####
def run_once(self, opt, run_engine_opt, log_dir, prev_log_dir=None, fold_idx=0):
"""Simply run the defined run_step of the related method once."""
check_manual_seed(self.seed)
log_info = {}
if self.logging:
# check_log_dir(log_dir)
rm_n_mkdir(log_dir)
tfwriter = SummaryWriter(log_dir=log_dir)
json_log_file = log_dir + "/stats.json"
with open(json_log_file, "w") as json_file:
json.dump({}, json_file) # create empty file
log_info = {
"json_file": json_log_file,
"tfwriter": tfwriter,
}
####
loader_dict = {}
for runner_name, runner_opt in run_engine_opt.items():
loader_dict[runner_name] = self._get_datagen(
opt["batch_size"][runner_name],
runner_name,
opt["target_info"]["gen"],
nr_procs=runner_opt["nr_procs"],
fold_idx=fold_idx,
)
####
def get_last_chkpt_path(prev_phase_dir, net_name):
stat_file_path = prev_phase_dir + "/stats.json"
with open(stat_file_path) as stat_file:
info = json.load(stat_file)
epoch_list = [int(v) for v in info.keys()]
last_chkpts_path = "%s/%s_epoch=%d.tar" % (
prev_phase_dir,
net_name,
max(epoch_list),
)
return last_chkpts_path
# TODO: adding way to load pretrained weight or resume the training
# parsing the network and optimizer information
net_run_info = {}
net_info_opt = opt["run_info"]
for net_name, net_info in net_info_opt.items():
assert inspect.isclass(net_info["desc"]) or inspect.isfunction(
net_info["desc"]
), "`desc` must be a Class or Function which instantiate NEW objects !!!"
net_desc = net_info["desc"]()
# TODO: customize print-out for each run ?
# summary_string(net_desc, (3, 270, 270), device='cpu')
pretrained_path = net_info["pretrained"]
if pretrained_path is not None:
if pretrained_path == -1:
# * depend on logging format so may be broken if logging format has been changed
pretrained_path = get_last_chkpt_path(prev_log_dir, net_name)
net_state_dict = torch.load(pretrained_path)["desc"]
else:
chkpt_ext = os.path.basename(pretrained_path).split(".")[-1]
if chkpt_ext == "npz":
net_state_dict = dict(np.load(pretrained_path))
net_state_dict = {
k: torch.from_numpy(v) for k, v in net_state_dict.items()
}
elif chkpt_ext == "tar": # ! assume same saving format we desire
net_state_dict = torch.load(pretrained_path)["desc"]
colored_word = colored(net_name, color="red", attrs=["bold"])
print(
"Model `%s` pretrained path: %s" % (colored_word, pretrained_path)
)
# load_state_dict returns (missing keys, unexpected keys)
net_state_dict = convert_pytorch_checkpoint(net_state_dict)
load_feedback = net_desc.load_state_dict(net_state_dict, strict=False)
# * uncomment for your convenience
print("Missing Variables: \n", load_feedback[0])
print("Detected Unknown Variables: \n", load_feedback[1])
# * extremely slow to pass this on DGX with 1 GPU, why (?)
net_desc = DataParallel(net_desc)
net_desc = net_desc.to("cuda")
# print(net_desc) # * dump network definition or not?
optimizer, optimizer_args = net_info["optimizer"]
optimizer = optimizer(net_desc.parameters(), **optimizer_args)
# TODO: expand for external aug for scheduler
nr_iter = opt["nr_epochs"] * len(loader_dict["train"])
scheduler = net_info["lr_scheduler"](optimizer)
net_run_info[net_name] = {
"desc": net_desc,
"optimizer": optimizer,
"lr_scheduler": scheduler,
# TODO: standardize API for external hooks
"extra_info": net_info["extra_info"],
}
# parsing the running engine configuration
assert (
"train" in run_engine_opt
), "No engine for training detected in description file"
# initialize runner and attach callback afterward
# * all engine shared the same network info declaration
runner_dict = {}
for runner_name, runner_opt in run_engine_opt.items():
runner_dict[runner_name] = RunEngine(
dataloader=loader_dict[runner_name],
engine_name=runner_name,
run_step=runner_opt["run_step"],
run_info=net_run_info,
log_info=log_info,
)
for runner_name, runner in runner_dict.items():
callback_info = run_engine_opt[runner_name]["callbacks"]
for event, callback_list, in callback_info.items():
for callback in callback_list:
if callback.engine_trigger:
triggered_runner_name = callback.triggered_engine_name
callback.triggered_engine = runner_dict[triggered_runner_name]
runner.add_event_handler(event, callback)
# retrieve main runner
main_runner = runner_dict["train"]
main_runner.state.logging = self.logging
main_runner.state.log_dir = log_dir
# start the run loop
main_runner.run(opt["nr_epochs"])
print("\n")
print("########################################################")
print("########################################################")
print("\n")
return
####
def run(self):
"""Define multi-stage run or cross-validation or whatever in here."""
self.nr_gpus = torch.cuda.device_count()
print('Detect #GPUS: %d' % self.nr_gpus)
phase_list = self.model_config["phase_list"]
engine_opt = self.model_config["run_engine"]
prev_save_path = None
for phase_idx, phase_info in enumerate(phase_list):
if len(phase_list) == 1:
save_path = self.log_dir
else:
save_path = self.log_dir + "/%02d/" % (phase_idx)
self.run_once(
phase_info, engine_opt, save_path, prev_log_dir=prev_save_path
)
prev_save_path = save_path
####
if __name__ == "__main__":
args = docopt(__doc__, version="HoVer-Net v1.0")
trainer = TrainManager()
if args["--view"]:
if args["--view"] != "train" and args["--view"] != "valid":
raise Exception('Use "train" or "valid" for --view.')
trainer.view_dataset(args["--view"])
else:
os.environ["CUDA_VISIBLE_DEVICES"] = args["--gpu"]
trainer.run()
再结合之前readme让我设置的:
Set path to the data directories in config.py
Set path where checkpoints will be saved in config.py
Set path to pretrained Preact-ResNet50 weights in models/hovernet/opt.py. Download the weights here.
Modify hyperparameters, including number of epochs and learning rate in models/hovernet/opt.py.
进行综合评估
最新发布