最优二叉树概念 (哈夫曼树)

本文介绍了树的路径长度与带权路径长度的概念,并详细解释了什么是最优二叉树(哈夫曼树),包括其构造方法及特点。通过实例展示了如何找到代价最小的二叉树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优二叉树概念 

1.树的路径长度
     树的路径长度是从树根到树中每一结点的路径长度之和。在结点数目相同的二叉树中,完全二叉树的路径长度最短。

2.树的带权路径长度(Weighted Path Length of Tree,简记为WPL)
  结点的权:在一些应用中,赋予树中结点的一个有某种意义的实数。
  结点的带权路径长度:结点到树根之间的路径长度与该结点上权的乘积。
  树的带权路径长度(Weighted Path Length of Tree):定义为树中所有叶结点的带权路径长度之和,通常记为: 
                  
  其中:
      
    n表示叶子结点的数目
    wi和li分别表示叶结点ki的权值和根到结点ki之间的路径长度。
    树的带权路径长度亦称为树的代价。

3.最优二叉树或哈夫曼树
     在权为wl,w2,…,wn的n个叶子所构成的所有二叉树中,带权路径长度最小(即代价最小)的二叉树称为最优二叉树哈夫曼树
  【例】给定4个叶子结点a,b,c和d,分别带权7,5,2和4。构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:
        (a)WPL=7*2+5*2+2*2+4*2=36
        (b)WPL=7*3+5*3+2*1+4*2=46
        (c)WPL=7*1+5*2+2*3+4*3=35
  其中(c)树的WPL最小,可以验证,它就是哈夫曼树。
        
  注意:
    ① 叶子上的权值均相同时,完全二叉树一定是最优二叉树,否则完全二叉树不一定是最优二叉树。
    ② 最优二叉树中,权越大的叶子离根越近。
    ③ 最优二叉树的形态不唯一,WPL最小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值