【手势识别-论文学习】 Hands Deep in Deep Learning for Hand Pose Estimation

本文介绍了一种使用CNN网络直接输出手部关键点的方法,通过引入prior和refinement网络提高了精度。研究对比了浅、深、多尺度网络,并提出了基于低维嵌入的手势参数化思想。refinement步骤进一步增强了关键点定位的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(CVWW 2015) Hands Deep in Deep Learning for Hand Pose Estimation

这篇文章是使用CNN网络来直接输出关节点位置。本文的特点是速度很快并且精度可以通过refinement提高。作者主要的贡献是两个部分:

  1. 设计一个加入了prior的网络输出手的关节点
  2. 基于上述关节点预测,对每一个关节点用一个refinement网络来进行更精确的关节点输出。甚至可以用迭代的方式多次refine关节点位置

文章直接对比了四个网络:shallow,deep,multi-scale,和deep with prior。

首先对于前面三者的对比,作者的观点:“unsurprisingly, the multi-scale approach performs better than the deep architecture, which performs better than the shallow one.” 多尺度网络>深网络>浅网络(的确unsurprisingly)。但是作者认为手势估计是一个非常复杂的任务,自由度非常高,在那么一个庞大的解空间里面直接搜寻一个最优解似乎是很不容易的。但是作者借着【1】的思想,认为“a low dimensional embedding is sufficient to parameterize the hand’s 3D pose”,所以不同于直接预测关节点位置,作者希望能预测low dimensional空间的参数。因为在【1】中,各种手势被认为是rely on a linear embedding,换句话说手势可以被认为是一些低维的basis configuration的线性组合。这样相当

Abstract As robots become more integrated into humans' everyday lives, it becomes essential for them to perceive and understand people's intentions and actions. People will want a more natural way to interact with robots, closer to the way humans do it among themselves. When humans communicate, they use a rich set of gestures and body language in addition to speech, which significantly enhances their ability to get thoughts, feelings, and intentions across. Hence, robots strongly need the ability to understand human gestures and to interpret body language. One of the most expressive components of body language are hand gestures, which is why they are so important at the interface between humans and robots. This thesis presents an extensible, vision-based communication system that is able to interpret 2D dynamic hand gestures. The system consists of three primary modules: hand segmentation, feature extraction, and gesture recognition. Hand segmentation uses both motion and skin-color detection to separate the hand from cluttered backgrounds. The feature extraction module gathers hand trajectory information and encapsulates it into a form that is used by the gesture recognizer. This last module identifies the gesture and translates it into a command that the robot can understand. Unlike other existing work, this hand gesture recognition system operates in realtime without the use of special hardware. Results demonstrate that the system is robust in realistic, complex environments. Moreover, this system does not require a priori training and allows the hand great flexibility of motion without the use of gloves or special markers.
### 基于深度学习的目标姿态估计 目标姿态估计算法旨在预测物体的空间方位和角度,这在机器人操作、增强现实等领域具有重要价值。通过利用卷积神经网络(CNN),可以实现高效而精准的姿态识别。 #### 方法概述 现代基于深度学习的姿态估计通常采用端到端的学习框架,在该框架内,输入图像经过一系列卷积层提取特征图谱,随后这些特征被用于回归或分类任务以确定物体的位置参数[^1]。具体来说: - **单阶段方法**:这类方法直接从原始图片中预测出物体的边界框及其对应的六自由度(6DoF)位姿向量。例如SSD-Pose扩展了传统的SSD架构来完成此项工作。 - **两阶段方法**:先定位候选区域再细化其位置信息。Mask R-CNN是一个著名的实例,它不仅能够精确定位物体还能分割出它们的具体轮廓从而辅助更准确地获取姿态数据。 对于特定应用场景下的优化调整也非常重要。比如针对文档中的表格检测问题,研究者们提出了专门定制化的解决方案如YOLOv3改进版,其中引入了k-means聚类来进行锚点设置以及特殊的后处理策略去除干扰因素影响最终效果[^2]。 ```python import torch from torchvision import models, transforms from PIL import Image # 加载预训练模型并切换至评估模式 model = models.detection.maskrcnn_resnet50_fpn(pretrained=True) model.eval() transform = transforms.Compose([ transforms.ToTensor(), ]) def predict_pose(image_path): img = Image.open(image_path).convert('RGB') tensor_img = transform(img)[None,:,:,:] with torch.no_grad(): prediction = model(tensor_img) boxes = prediction[0]['boxes'].numpy() labels = prediction[0]['labels'].numpy() return boxes, labels ``` 此代码片段展示了如何使用PyTorch加载一个预先训练好的Mask R-CNN模型,并定义了一个简单的函数`predict_pose()`用来接收一张图片路径作为输入返回检测到的对象边框坐标列表及标签数组。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值