AI编程: 一个案例对比CPU和GPU在深度学习方面的性能差异

背景

字节跳动正式发布中国首个AI原生集成开发环境工具(AI IDE)——AI编程工具Trae国内版。 该工具模型搭载doubao-1.5-pro,支持切换满血版DeepSeek R1&V3, 可以帮助各阶段开发者与AI流畅协作,更快、更高质量地完成编程工作,提升开发效率。

安装试用后,效果确实不错,无论是编程还是开发环境的自动化构建,都能实现较高程度的自动化。

本文演示了一个实际编程案例,在一台配备Intel CPU和集成显卡的个人PC上,对比GPU/CPU在一些耗时运算方面的性能差异,并通过图表展示对比结果。涉及基本的神经网络模型 编程,如python环境配置、矩阵运算、前向传播、反向传播,基于Intel集成显卡GPU的开发环境配置等。

运行环境

builder模式实施任务

向Trae描述任务需求

本机是 i7-1260P + Iris Xe + 16G内存, 请编写程序,对比一下使用CPU和GPU进行某些深度学习运算的性能差异。

只需根几秒的时间, trae就已经完成了代码编写 gpu_cpu_benchmark.py,并输出了python环境依赖库清单requirements.txt

image-20250305145706794

生成依赖并自动安装

requirements.txt如下图所示,当然,依赖文件并不是一步到位 直接生成的。而是经历了多个版本的叠代。

image-20250305145908944

比如 ,一开始trae推荐的是以下版本的torch

pip install torch==2.3.0 torchvision==0.18.0 intel-extension-for-pytorch==2.3.0 memory-profiler==0.61

但是因版本匹配问题失败,因此, trace又调整了软件包版本。

包括在使用intel集成显卡的时候与Nvidia GPU编程不同, trae提示:

检测到PyTorch安装需要额外源地址,现在添加Intel官方源重新安装依赖。

pip install -r requirements.txt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

image-20250305114603947

评测程序运行

测评程序分别使用cpu、XPU(即intel的集成显卡)进行矩阵运算、前向传播、反向传播等方面的运算。

image-20250305150631990

GPU满负荷工作:

image-20250305144548727

评测结果

评测程序最终自动输出了评测结果,如下图所示。结果表明, 这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

这台集成显卡的GPU性能实在一般, 只有矩阵运算比CPU强,其他方面如前向传播、反向传播和内存使用,都比CPU要弱。后续有机会换个显卡再试。

image-20250305144648146

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月光技术杂谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值