Travel Cards CodeForces - 847K

In the evening Polycarp decided to analyze his today's travel expenses on public transport.

The bus system in the capital of Berland is arranged in such a way that each bus runs along the route between two stops. Each bus has no intermediate stops. So each of the buses continuously runs along the route from one stop to the other and back. There is at most one bus running between a pair of stops.

Polycarp made n trips on buses. About each trip the stop where he started the trip and the the stop where he finished are known. The trips follow in the chronological order in Polycarp's notes.

It is known that one trip on any bus costs a burles. In case when passenger makes a transshipment the cost of trip decreases to b burles (b < a). A passenger makes a transshipment if the stop on which he boards the bus coincides with the stop where he left the previous bus. Obviously, the first trip can not be made with transshipment.

For example, if Polycarp made three consecutive trips: "BerBank"  "University", "University"  "BerMall", "University"  "BerBank", then he payed a + b + a = 2a + bburles. From the BerBank he arrived to the University, where he made transshipment to the other bus and departed to the BerMall. Then he walked to the University and returned to the BerBank by bus.

Also Polycarp can buy no more than k travel cards. Each travel card costs f burles. The travel card for a single bus route makes free of charge any trip by this route (in both directions). Once purchased, a travel card can be used any number of times in any direction.

What is the smallest amount of money Polycarp could have spent today if he can buy no more than k travel cards?

Input

The first line contains five integers n, a, b, k, f (1 ≤ n ≤ 300, 1 ≤ b < a ≤ 100, 0 ≤ k ≤ 300, 1 ≤ f ≤ 1000) where:

  • n — the number of Polycarp trips,
  • a — the cost of a regualar single trip,
  • b — the cost of a trip after a transshipment,
  • k — the maximum number of travel cards Polycarp can buy,
  • f — the cost of a single travel card.

The following n lines describe the trips in the chronological order. Each line contains exactly two different words separated by a single space — the name of the start stop and the name of the finish stop of the trip. All names consist of uppercase and lowercase English letters and have lengths between 1 to 20 letters inclusive. Uppercase and lowercase letters should be considered different.

Output

Print the smallest amount of money Polycarp could have spent today, if he can purchase no more than k travel cards.

Examples

Input

3 5 3 1 8
BerBank University
University BerMall
University BerBank

Output

11

Input

4 2 1 300 1000
a A
A aa
aa AA
AA a

Output

5

Note

In the first example Polycarp can buy travel card for the route "BerBank University" and spend 8 burles. Note that his second trip "University"  "BerMall" was made after transshipment, so for this trip Polycarp payed 3 burles. So the minimum total sum equals to 8 + 3 = 11 burles.

In the second example it doesn't make sense to buy travel cards. Note that each of Polycarp trip (except the first) was made with transshipment. So the minimum total sum equals to 2 + 1 + 1 + 1 = 5 burles.

题意

依次给你N段旅行 让你计算最小花费

如果起点是上一个的终点  花费b 否则 花费a

最多可以花费F元买K条路的卡  这条路免费

思路

用map和pair找出每条路的花费 排序 从大到小判断是否购买卡

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef pair<string,string> edge;
map<edge,int> mp;
int ans[500];
bool cmp(int a,int b)
{
    return a>b;
}
int main()
{
    int n,a,b,k,f,i,j,x;
    scanf("%d%d%d%d%d",&n,&a,&b,&k,&f);
    string u,v;
    string uu,vv;

    uu = vv = "+";
    for(i=1;i<=n;i++)
    {
        cin>>u>>v;
        if(u == vv) x = b;
        else x = a;
        uu = u,vv=v;
        if(u > v) swap(u,v);
        mp[make_pair(u,v)] += x;
    }
    map<edge,int>::iterator it;
    int sum = 0;
    memset(ans,0,sizeof(ans));
    for(it = mp.begin(),i=0;it!=mp.end();it++,i++)
    {
        ans[i] = it->second;
        sum += ans[i];
    }
    sort(ans,ans+i,cmp);
    for(j=0;j<k&&j<i;j++)
    {
        if(ans[j] > f) sum = sum - ans[j] + f;
    }
    printf("%d\n",sum);
    return 0;
}

 

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值