Points and Powers of Two CodeForces - 988D

本文介绍了一个算法问题,即从一组给定的坐标中找到最大的子集,使得该子集中任意两点之间的距离为2的幂次方。文章通过示例解释了问题,并提供了一段C++代码实现解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There are n distinct points on a coordinate line, the coordinate of i-th point equals to xi. Choose a subset of the given set of points such that the distance between each pair of points in a subset is an integral power of two. It is necessary to consider each pair of points, not only adjacent. Note that any subset containing one element satisfies the condition above. Among all these subsets, choose a subset with maximum possible size.

In other words, you have to choose the maximum possible number of points xi1,xi2,,xim such that for each pair xij, xik it is true that |xijxik|=2d where d is some non-negative integer number (not necessarily the same for each pair of points).


Input

The first line contains one integer n (1n2105) — the number of points.

The second line contains n pairwise distinct integers x1,x2,,xn (109xi109) — the coordinates of points.

Output

In the first line print m — the maximum possible number of points in a subset that satisfies the conditions described above.

In the second line print m integers — the coordinates of points in the subset you have chosen.

If there are multiple answers, print any of them.

Examples
Input
6
3 5 4 7 10 12
Output
3
7 3 5
Input
5
-1 2 5 8 11
Output
1
8
Note

In the first example the answer is [7,3,5]. Note, that |73|=4=22, |75|=2=21 and |35|=2=21. You can't find a subset having more points satisfying the required property.

#include <iostream>
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
ll a[250000];
ll s[50];
int main()
{
    ll n,i,j;
    map<ll,int> q;
    s[1] = 1;
    for(i=2;i <= 35;i++)
    {
        s[i] = s[i-1] * 2;
    }
    //cout<<s[30]<<endl;
    cin>>n;
    for(i=0;i<n;i++)
    {
        scanf("%lld",&a[i]);
        q[a[i]] = 1;
    }
    sort(a,a+n);
    for(i=0;i<n;i++)
    {
        for(j=1;j<=35;j++)
        {
            if(q.count(a[i]-s[j])&&q.count(a[i]+s[j]))
            {
                printf("3\n");
                printf("%lld %lld %lld\n",a[i]-s[j],a[i],a[i]+s[j]);
                return 0;
            }
        }
    }
    for(i=0;i<n;i++)
    {
        for(j=1;j<=35;j++)
        {
            if(q.count(a[i]+s[j]))
            {
                printf("2\n");
                printf("%lld %lld\n",a[i],a[i]+s[j]);
                return 0;
            }
            if(q.count(a[i]-s[j]))
            {
                printf("2\n");
                printf("%lld %lld\n",a[i],a[i]-s[j]);
                return 0;
            }
        }
    }
    printf("1\n%lld\n",a[0]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值