There are n distinct points on a coordinate line, the coordinate of i-th point equals to xi. Choose a subset of the given set of points such that the distance between each pair of points in a subset is an integral power of two. It is necessary to consider each pair of points, not only adjacent. Note that any subset containing one element satisfies the condition above. Among all these subsets, choose a subset with maximum possible size.
In other words, you have to choose the maximum possible number of points xi1,xi2,…,xim such that for each pair xij, xik it is true that |xij−xik|=2d where d is some non-negative integer number (not necessarily the same for each pair of points).
Input
The first line contains one integer n (1≤n≤2⋅105) — the number of points.
The second line contains n pairwise distinct integers x1,x2,…,xn (−109≤xi≤109) — the coordinates of points.
OutputIn the first line print m — the maximum possible number of points in a subset that satisfies the conditions described above.
In the second line print m integers — the coordinates of points in the subset you have chosen.
If there are multiple answers, print any of them.
Examples6 3 5 4 7 10 12
3 7 3 5
5 -1 2 5 8 11
1 8
In the first example the answer is [7,3,5]. Note, that |7−3|=4=22, |7−5|=2=21 and |3−5|=2=21. You can't find a subset having more points satisfying the required property.
#include <iostream>
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
ll a[250000];
ll s[50];
int main()
{
ll n,i,j;
map<ll,int> q;
s[1] = 1;
for(i=2;i <= 35;i++)
{
s[i] = s[i-1] * 2;
}
//cout<<s[30]<<endl;
cin>>n;
for(i=0;i<n;i++)
{
scanf("%lld",&a[i]);
q[a[i]] = 1;
}
sort(a,a+n);
for(i=0;i<n;i++)
{
for(j=1;j<=35;j++)
{
if(q.count(a[i]-s[j])&&q.count(a[i]+s[j]))
{
printf("3\n");
printf("%lld %lld %lld\n",a[i]-s[j],a[i],a[i]+s[j]);
return 0;
}
}
}
for(i=0;i<n;i++)
{
for(j=1;j<=35;j++)
{
if(q.count(a[i]+s[j]))
{
printf("2\n");
printf("%lld %lld\n",a[i],a[i]+s[j]);
return 0;
}
if(q.count(a[i]-s[j]))
{
printf("2\n");
printf("%lld %lld\n",a[i],a[i]-s[j]);
return 0;
}
}
}
printf("1\n%lld\n",a[0]);
return 0;
}
本文介绍了一个算法问题,即从一组给定的坐标中找到最大的子集,使得该子集中任意两点之间的距离为2的幂次方。文章通过示例解释了问题,并提供了一段C++代码实现解决方案。
387

被折叠的 条评论
为什么被折叠?



