- 绝对值(普通):∥x∑i=1nyi−y∑i=1nxi∥\| \frac{x}{\sum_{i=1}^{n}y_{i}} - \frac{y}{\sum_{i=1}^{n}x_{i}} \|∥∑i=1nyix−∑i=1nxiy∥
- 绝对值(自动放缩):∣x∑i=1nyi−y∑i=1nxi∣\left| \frac{x}{\sum_{i=1}^{n}y_{i}} - \frac{y}{\sum_{i=1}^{n}x_{i}} \right|∣∣∣∑i=1nyix−∑i=1nxiy∣∣∣
- 范数(普通):∥x∑i=1nyi−y∑i=1nxi∥\left\| \frac{x}{\sum_{i=1}^{n}y_{i}} - \frac{y}{\sum_{i=1}^{n}x_{i}} \right\|∥∥∥∑i=1nyix−∑i=1nxiy∥∥∥
- 范数(自动放缩):∥x∑i=1nyi−y∑i=1nxi∥\left\| \frac{x}{\sum_{i=1}^{n}y_{i}} - \frac{y}{\sum_{i=1}^{n}x_{i}} \right\|∥∥∥∑i=1nyix−∑i=1nxiy∥∥∥
- 小(圆)括号(普通):(x∑i=1nyi)( \frac{x}{\sum_{i=1}^{n}y_{i}} )(∑i=1nyix)
- 小(圆)括号(自动放缩):(x∑i=1nyi)\left( \frac{x}{\sum_{i=1}^{n}y_{i}} \right)(∑i=1nyix)
- 中(方)括号(普通):[x∑i=1nyi][ \frac{x}{\sum_{i=1}^{n}y_{i}} ][∑i=1nyix]
- 中(方)括号(自动放缩):[x∑i=1nyi]\left[ \frac{x}{\sum_{i=1}^{n}y_{i}} \right][∑i=1nyix]
- 大(花)括号(普通):{x∑i=1nyi}\{ \frac{x}{\sum_{i=1}^{n}y_{i}} \}{∑i=1nyix}
- 中(花)括号(自动放缩):{x∑i=1nyi}\left\{ \frac{x}{\sum_{i=1}^{n}y_{i}} \right\}{∑i=1nyix}
- 尖括号(普通):<x∑i=1nyi><\frac{x}{\sum_{i=1}^{n}y_{i}}><∑i=1nyix>
- 尖括号(自动缩放):$\left \langle \frac{x}{\sum_{i=1}^{n}y_{i}} \right \langle $
- 取下整:⌊x∑i=1nyi⌋\left \lfloor \frac{x}{\sum_{i=1}^{n}y_{i}} \right \rfloor⌊∑i=1nyix⌋
- 取上整:⌈x∑i=1nyi⌉\left \lceil \frac{x}{\sum_{i=1}^{n}y_{i}} \right \rceil⌈∑i=1nyix⌉
- 斜线与反斜线:/x∑i=1nyi\\left / \frac{x}{\sum_{i=1}^{n}y_{i}} \right \backslash/∑i=1nyix\
- 上下箭头:↑x∑i=1nyi↓\left \uparrow \frac{x}{\sum_{i=1}^{n}y_{i}} \right \downarrow⏐⏐↑∑i=1nyix↓⏐⏐
- 上下双线箭头:⇑x∑i=1nyi⇓\left \Uparrow \frac{x}{\sum_{i=1}^{n}y_{i}} \right \Downarrow‖‖⇑∑i=1nyix⇓‖‖
- 双向箭头:↕x∑i=1nyi↕\left \updownarrow \frac{x}{\sum_{i=1}^{n}y_{i}} \right \updownarrow↓⏐↑∑i=1nyix↓⏐↑
- 双向双向箭头:⇕x∑i=1nyi⇕\left \Updownarrow \frac{x}{\sum_{i=1}^{n}y_{i}} \right \Updownarrow⇓‖⇑∑i=1nyix⇓‖⇑
- 通过 \big、\Big、\bigg、\Bigg:<{[(x∑i=1nyi)]}>\Bigg < \bigg \{ \Big [ \big ( \frac{x}{\sum_{i=1}^{n}y_{i}} \big ) \Big ] \bigg \} \Bigg >⟨{[(∑i=1nyix)]}⟩
参考
- http://www.360doc.com/content/12/0713/22/5696310_224072724.shtml