Leetcode 64. 最小路径和

本文详细解析了如何求解从网格左上角到右下角的最小路径和问题,采用动态规划方法,并提供了高效的C++代码实现。文章还讨论了如何进一步优化空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

在这里插入图片描述

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

C++

class Solution {
public:
/*
典型的动态规划:
dp[i][j]表示从左上角到达(i,j)上午路径最小值
*/
    int minPathSum(vector<vector<int>>& grid) {
        int m=grid.size();
        int n=grid[0].size();
        int dp[m][n];
        //初始化
        dp[0][0]=grid[0][0];
        for(int i=1;i<m;i++)  dp[i][0]=dp[i-1][0]+grid[i][0];
        for(int i=1;i<n;i++)  dp[0][i]=dp[0][i-1]+grid[0][i];

        //填表
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++){
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }

        return dp[m-1][n-1];
        

    }
};

这道题其实可以再减少空间复杂度,直接在原来的grid上进行操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值