高斯混合模型(GMM)

本文介绍了高斯混合模型(GMM),包括单高斯模型和GMM的区别,阐述了GMM在视频前景分割等场景中的优势,并提供了MATLAB实现的源码。GMM适用于多类别的划分,对于复杂对象建模和自适应变化具有更强的适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章: http://wolfsky2002.blog.163.com/blog/static/10343152010112610221540/

 

高斯混合模型(GMM)参数优化及实现 2010-11-13

1 高斯混合模型概述

高斯密度函数估计是一种参数化模型。有单高斯模型(Single Gaussian Model, SGM)和高斯混合模型(Gaussian mixture modelGMM)两类。类似于聚类,根据高斯概率密度函数(PDF,见公式1)参数的不同,每一个高斯模型可以看作一种类别,输入一个样本 ,即可通过PDF计算其值,然后通过一个阈值来判断该样本是否属于高斯模型。很明显,SGM适合于仅有两类别问题的划分,而GMM由于具有多个模型,划分更为精细,适用于多类别的划分,可以应用于复杂对象建模。

下面以视频前景分割应用场景为例,说明SGMGMM在应用上的优劣比较:

l        SGM需要进行初始化,如在进行视频背景分割时,这意味着如果人体在前几帧就出现在摄像头前,人体将会被初始化为背景,而使模型无法使用;

l        SGM只能进行微小性渐变,而不可突变。如户外亮度随时间的渐变是可以适应的,如果在明亮的室内突然关灯,单高斯模型就会将整个室内全部判断为前景。又如,若在监控范围内开了一辆车,并在摄像头下开始停留。由于与模型无法匹配,车会一直被视为前景。当车过很长时间离去时,由于车停留点的亮度发生了很大的变化,因此已经无法与先前的背景模型相匹配;

l        SGM无法适应背景有多个状态,如窗帘,风吹的树叶。单高斯模型无法表示这种情况,而使得前背景检测混乱,而GMM能够很好地描述不同状态;

l        相对于单高斯模型的自适应变化,混合高斯模型的自适应变化要健壮的多。它能解决单高斯模型很多不能解决的问题。如无法解决同一样本点的多种状态,无法进行模型状态转化等。

2 理论说明部分

因博客中无法编辑公式,故详细文档见这里。代码如下:

3 源码

3.1 单高斯模型

下面代码实现了SGM,并实现了人脸肤色检测。其中图像处理、矩阵运算采用了openCV库函数

----------

..............

 

3.2高斯混合模型

1)以下matlab代码实现了高斯混合模型:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值