How do you design a rand7 function

本文探讨了如何利用rand5函数生成rand7函数的方法。通过分析确定性解决方案的局限性,并提供了一种通过循环调用rand5来实现均匀分布rand7的算法。

How do you design a rand7 function using a rand5 function?

My solution is:

def rand7():
     
     n = rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()
     return n%8

Firstly, is the correct? Second, either way provide additional ways of accomplishing this. Thanks!

Update: 10000000 simulations resulted in the following results

0  had count  1250972  Chance:  12.50972%
1  had count  1251284  Chance:  12.51284%
2  had count  1248768  Chance:  12.48768%
3  had count  1251610  Chance:  12.5161%
4  had count  1250475  Chance:  12.50475%
5  had count  1249196  Chance:  12.49196%
6  had count  1249427  Chance:  12.49427%
7  had count  1248268  Chance:  12.48268%
5 Answers
Gayle Laakmann McDowell 
Gayle Laakmann McDowellAuthor of Cracking the Coding Interview
Rand7 is supposed to turn one of 7 numbers (0 through 6 OR 1 through 7). Rand5 returns one of 5 numbers. For my explanation, I've assumed that rand7 returns 0 through 6.

There is no deterministic way of doing this [see explanation below]. By "deterministic" we mean that there is no way of doing this such that you can GUARANTEE that the program will return within X calls to rand. So, no, your solution does not work since it is deterministic.

How can you solve it? You'll have to do it with a loop that could, theoretically, loop for a very long time.

Here's one simple way:
  1. Call rand5 until you get a number between 0 and 3 (that is, anything but 4). Set b0 (bit 0) to that number % 2. So b0 is 0 if rand5 was 0 or 2, and 1 otherwise.
  2. Do the same for bit 1 and bit 2.
  3. We now have a 3 bit number -- which will be a number between 0 and 7.
  4. If that number is a 7, start over. Else, return.

In other words, we're doing this:
int rand2() {
    int x = rand5();
    if x == 4 return rand2(); // restart
    else return x % 2;
}

int rand7() {
     int x = rand2() * 4 + rand2() * 2 + rand2();
     if (x == 7) return rand7(); // restart
     else return x;
}


Why there's no deterministic solution
Suppose there were a deterministic way of doing this. This means that you are guaranteeing me that within X calls  max to rand5, you can randomly generate a number between 0 and 6 with  equal probability.

Wonderful. Okay.

Observe that:
  1. If you run the rand7 program twice, and you get the same results both times for each rand5 call, you'll get the same result for the rand7 program.
  2. Some "paths" through the program might call rand5 fewer than X times. However, for the purposes we can treat this as still calling rand5 X times, where it just doesn't use those results.

So, now, we basically have a rand7 program that calls rand5  exactly X times. The results of those calls will determine what the value for rand7.

You can treat the sequence of results for rand5 as a string if you'd like. So, 013 means to get a 0 on the first call, then a 1, then a 3.

How many strings could you make? Well, X slots. 5 possibilities for each slot. So, there are 5^X slots.

Following me so far? Excellent!

Now then. I'd like you to divide those 5^X strings into 7  equal buckets.

What, you can't do that? Because 7 doesn't go into 5^X equally?

Oh. 

Guess your deterministic rand7 program isn't so equally random after all.
这是一个基于AI视觉识别与3D引擎技术打造的沉浸式交互圣诞装置。 简单来说,它是一棵通过网页浏览器运行的数字智慧圣诞树,你可以用真实的肢体动作来操控它的形态,并将自己的回忆照片融入其中。 1. 核心技术组成 这个作品是由三个尖端技术模块组成的: Three.js 3D引擎:负责渲染整棵圣诞树、动态落雪、五彩挂灯和树顶星。它创建了一个具备光影和深度感的虚拟3D空间。 MediaPipe AI手势识别:调用电脑摄像头,实时识别手部的21个关键点。它能读懂你的手势,如握拳、张开或捏合。 GSAP动画系统:负责处理粒子散开与聚合时的平滑过渡,让成百上千个物体在运动时保持顺滑。 2. 它的主要作用与功能 交互式情感表达: 回忆挂载:你可以上传本地照片,这些照片会像装饰品一样挂在树上,或者像星云一样环绕在树周围。 魔法操控:握拳时粒子迅速聚拢,构成一棵挺拔的圣诞树;张开手掌时,树会瞬间炸裂成星光和雪花,照片随之起舞;捏合手指时视线会拉近,让你特写观察某一张选中的照片。 节日氛围装饰: 在白色背景下,这棵树呈现出一种现代艺术感。600片雪花在3D空间里缓缓飘落,提供视觉深度。树上的彩色粒子和白色星灯会周期性地呼吸闪烁,模拟真实灯串的效果。 3. 如何使用 启动:运行代码后,允许浏览器开启摄像头。 装扮:点击上传照片按钮,选择温馨合照。 互动:对着摄像头挥动手掌可以旋转圣诞树;五指张开让照片和树化作满天星辰;攥紧拳头让它们重新变回挺拔的树。 4. 适用场景 个人纪念:作为一个独特的数字相册,在节日陪伴自己。 浪漫惊喜:录制一段操作手势让照片绽放的视频发给朋友。 技术展示:作为WebGL与AI结合的案例,展示前端开发的潜力。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文提出了一种计及连锁故障传播路径的电力系统N-k多阶段双层优化及故障场景筛选模型,并提供了基于Matlab的代码实现。该模型旨在应对复杂电力系统中可能发生的N-k故障(即多个元件相继失效),通过构建双层优化框架,上层优化系统运行策略,下层模拟故障传播过程,从而实现对关键故障场景的有效识别与筛选。研究结合多阶段动态特性,充分考虑故障的时序演化与连锁反应机制,提升了电力系统安全性评估的准确性与实用性。此外,模型具备良好的通用性与可扩展性,适用于大规模电网的风险评估与预防控制。; 适合人群:电力系统、能源互联网及相关领域的高校研究生、科研人员以及从事电网安全分析、风险评估的工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估;②支撑N-k故障场景的自动化筛选与关键脆弱环节识别;③为电网规划、调度运行及应急预案制定提供理论依据和技术工具;④服务于高水平学术论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码深入理解模型构建细节,重点关注双层优化结构的设计逻辑、故障传播路径的建模方法以及场景削减技术的应用,建议在实际电网数据上进行测试与验证,以提升对模型性能与适用边界的认知。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值