linux file system brief intro

本文介绍了文件和目录的概念,探讨了Linux/UNIX文件系统的类型及其组成部分,包括Ext2、Ext3、NFS等,并解释了文件系统如何组织数据。

What is a File?

File are collection of data items stored on disk. Or, it’s device which can store the information, data, music (mp3 files), picture, movie, sound, book etc. In fact what ever you store in computer it must be inform of file. Files are always associated with devices like hard disk ,floppy disk etc. File is the last object in your file system tree. See Linux/UNIX – rules for naming file and directory names.

What is a directory?

Directory is group of files. Directory is divided into two types:

  • Root directory – Strictly speaking, there is only one root directory in your system, which is denoted by / (forward slash). It is root of your entire file system and can not be renamed or deleted.
  • Sub directory – Directory under root (/) directory is subdirectory which can be created, renamed by the user.

Directories are used to organize your data files, programs more efficiently.

Linux supports numerous file system types

  • Ext2: This is like UNIX file system. It has the concepts of blocks, inodes and directories.
  • Ext3: It is ext2 filesystem enhanced with journalling capabilities. Journalling allows fast file system recovery. Supports POSIX ACL (Access Control Lists).
  • Isofs (iso9660): Used by CDROM file system.
  • Sysfs: It is a ram-based filesystem initially based on ramfs. It is use to exporting kernel objects so that end user can use it easily.
  • Procfs: The proc file system acts as an interface to internal data structures in the kernel. It can be used to obtain information about the system and to change certain kernel parameters at runtime using sysctl command. For example you can find out cpuinfo with following command:

# cat /proc/cpuinfo

  • Or you can enable or disable routing/forwarding of IP packets between interfaces with following command:

# cat /proc/sys/net/ipv4/ip_forward
# echo "1" > /proc/sys/net/ipv4/ip_forward
# echo "0" > /proc/sys/net/ipv4/ip_forward

  • NFS: Network file system allows many users or systems to share the same files by using a client/server methodology. NFS allows sharing all of the above file system.
  • Linux also supports Microsoft NTFS, vfat, and many other file systems. See Linux kernel source tree Documentation/filesystem directory for list of all supported filesystem.

You can find out what type of file systems currently mounted with mount command:
$ mount
OR
$ cat /proc/mounts

What is a UNIX/Linux File system?

A UNIX file system is a collection of files and directories stored. Each file system is stored in a separate whole disk partition. The following are a few of the file system:

  • / – Special file system that incorporates the files under several directories including /dev, /sbin, /tmp etc
  • /usr – Stores application programs
  • /var – Stores log files, mails and other data
  • /tmp – Stores temporary files

See The importance of Linux partitions for more information.

But what is in a File system?

Again file system divided into two categories:

  • User data – stores actual data contained in files
  • Metadata – stores file system structural information such as superblock, inodes, directories

Next time I will write more about Metadata objects – superblock, inodes, directories with actual linux commands so that you can understand and master the concepts :)

Continue reading rest of the Understanding Linux file system series:

  • Part II – Understanding Linux superblock
  • Part III – An example of Surviving a Linux Filesystem Failures
  • Part IV – Understanding filesystem Inodes
  • Part V – Understanding filesystem directories
  • Part VI – Understanding UNIX/Linux symbolic (soft) and hard links
  • Part VII – Why isn’t it possible to create hard links across file system boundaries?
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值