Python Rate Limiter

 Python IRC bot, and it partially works, but if someone triggers less messages than the limit (e.g., rate limit is 5 messages per 8 seconds, and the person triggers only 4), and the next trigger is over the 8 seconds (e.g., 16 seconds later), the bot sends the message, but the queue becomes full and the bot waits 8 seconds, even though it's not needed since the 8 second period has lapsed.

share improve this question
 

8 Answers

up vote 134 down vote accepted

Here the simplest algorithm, if you want just to drop messages when they arrive too quickly (instead of queuing them, which makes sense because the queue might get arbitrarily large):

rate = 5.0; // unit: messages
per  = 8.0; // unit: seconds
allowance = rate; // unit: messages
last_check = now(); // floating-point, e.g. usec accuracy. Unit: seconds

when (message_received):
  current = now();
  time_passed = current - last_check;
  last_check = current;
  allowance += time_passed * (rate / per);
  if (allowance > rate):
    allowance = rate; // throttle
  if (allowance < 1.0):
    discard_message();
  else:
    forward_message();
    allowance -= 1.0;

There are no datastructures, timers etc. in this solution and it works cleanly :) To see this, 'allowance' grows at speed 5/8 units per seconds at most, i.e. at most five units per eight seconds. Every message that is forwarded deducts one unit, so you can't send more than five messages per every eight seconds.

Note that rate should be an integer, i.e. without non-zero decimal part, or the algorithm won't work correctly (actual rate will not be rate/per). E.g. rate=0.5; per=1.0; does not work because allowance will never grow to 1.0. But rate=1.0; per=2.0; works fine.

share improve this answer
 
2 
It's also worth pointing out that the dimension and scale of 'time_passed' must be the same as 'per', e.g. seconds. –  skaffman  Jun 17 '09 at 13:13
2 
Hi skaffman, thanks for the compliments---I threw it out of my sleeve but with 99.9% probability someone has earlier came up with a similar solution :) –  Antti Huima  Jun 19 '09 at 5:02
25 
That is a standard algorithm—it's a token bucket, without queue. The bucket is allowance. The bucket size is rate. The allowance += … line is an optimization of adding a token every rate ÷ per seconds.–  derobert  Jan 26 '12 at 19:32 
4 
@zwirbeltier What you write above is not true. 'Allowance' is always capped by 'rate' (look at the "// throttle" line) so it will only allow a burst of exactly 'rate' messages at any particular time, i.e. 5. –  Antti Huima  Mar 18 '13 at 8:20
4 
This is good, but can exceed the rate. Let's say at time 0 you forward 5 messages, then at time N * (8/5) for N = 1, 2, ... you can send another message, resulting in more than 5 messages in an 8 second period –  mindvirus  Aug 30 '13 at 16:17 

Use this decorator @RateLimited(ratepersec) before your function that enqueues.

Basically, this checks if 1/rate secs have passed since the last time and if not, waits the remainder of the time, otherwise it doesn't wait. This effectively limits you to rate/sec. The decorator can be applied to any function you want rate-limited.

In your case, if you want a maximum of 5 messages per 8 seconds, use @RateLimited(0.625) before your sendToQueue function.

import time

def RateLimited(maxPerSecond):
    minInterval = 1.0 / float(maxPerSecond)
    def decorate(func):
        lastTimeCalled = [0.0]
        def rateLimitedFunction(*args,**kargs):
            elapsed = time.clock() - lastTimeCalled[0]
            leftToWait = minInterval - elapsed
            if leftToWait>0:
                time.sleep(leftToWait)
            ret = func(*args,**kargs)
            lastTimeCalled[0] = time.clock()
            return ret
        return rateLimitedFunction
    return decorate

@RateLimited(2)  # 2 per second at most
def PrintNumber(num):
    print num

if __name__ == "__main__":
    print "This should print 1,2,3... at about 2 per second."
    for i in range(1,100):
        PrintNumber(i)
share improve this answer
 
 
I like the idea of using a decorator for this purpose. Why do is lastTimeCalled a list? Also, I doubt this'll work when multiple threads are calling the same RateLimited function... –  Stephan202  Mar 20 '09 at 20:09
5 
It's a list because simple types like float are constant when captured by a closure. By making it a list, the list is constant, but its contents are not. Yes, it's not thread-safe but that can be easily fixed with locks. –  Carlos A. Ibarra  Mar 20 '09 at 21:08
 
time.clock() doesn't have enough resolution on my system, so I adapted the code and changed to use time.time() –  mtrbean  Jun 5 '14 at 19:20
1 
For rate limiting, you definitely do not want to use time.clock(), which measures elapsed CPU time. CPU time can run much faster or much slower than "actual" time. You want to use time.time() instead, which measures wall time ("actual" time). –  John Wiseman  Dec 21 '15 at 23:42
 
BTW for real production systems: implementing a rate limiting with a sleep() call might not be a good idea as it is going to block the thread and therefore preventing another client from using it. –  Maresh  Feb 7 at 20:56

A Token Bucket is fairly simple to implement.

Start with a bucket with 5 tokens.

Every 5/8 seconds: If the bucket has less than 5 tokens, add one.

Each time you want to send a message: If the bucket has ≥1 token, take one token out and send the message. Otherwise, wait/drop the message/whatever.

(obviously, in actual code, you'd use an integer counter instead of real tokens and you can optimize out the every 5/8s step by storing timestamps)


Reading the question again, if the rate limit is fully reset each 8 seconds, then here is a modification:

Start with a timestamp, last_send, at a time long ago (e.g., at the epoch). Also, start with the same 5-token bucket.

Strike the every 5/8 seconds rule.

Each time you send a message: First, check if last_send ≥ 8 seconds ago. If so, fill the bucket (set it to 5 tokens). Second, if there are tokens in the bucket, send the message (otherwise, drop/wait/etc.). Third, set last_send to now.

That should work for that scenario.


I've actually written an IRC bot using a strategy like this (the first approach). Its in Perl, not Python, but here is some code to illustrate:

The first part here handles adding tokens to the bucket. You can see the optimization of adding tokens based on time (2nd to last line) and then the last line clamps bucket contents to the maximum (MESSAGE_BURST)

    my $start_time = time;
    ...
    # Bucket handling
    my $bucket = $conn->{fujiko_limit_bucket};
    my $lasttx = $conn->{fujiko_limit_lasttx};
    $bucket += ($start_time-$lasttx)/MESSAGE_INTERVAL;
    ($bucket <= MESSAGE_BURST) or $bucket = MESSAGE_BURST;

$conn is a data structure which is passed around. This is inside a method that runs routinely (it calculates when the next time it'll have something to do, and sleeps either that long or until it gets network traffic). The next part of the method handles sending. It is rather complicated, because messages have priorities associated with them.

    # Queue handling. Start with the ultimate queue.
    my $queues = $conn->{fujiko_queues};
    foreach my $entry (@{$queues->[PRIORITY_ULTIMATE]}) {
            # Ultimate is special. We run ultimate no matter what. Even if
            # it sends the bucket negative.
            --$bucket;
            $entry->{code}(@{$entry->{args}});
    }
    $queues->[PRIORITY_ULTIMATE] = [];

That's the first queue, which is run no matter what. Even if it gets our connection killed for flooding. Used for extremely important thinks, like responding to the server's PING. Next, the rest of the queues:

    # Continue to the other queues, in order of priority.
    QRUN: for (my $pri = PRIORITY_HIGH; $pri >= PRIORITY_JUNK; --$pri) {
            my $queue = $queues->[$pri];
            while (scalar(@$queue)) {
                    if ($bucket < 1) {
                            # continue later.
                            $need_more_time = 1;
                            last QRUN;
                    } else {
                            --$bucket;
                            my $entry = shift @$queue;
                            $entry->{code}(@{$entry->{args}});
                    }
            }
    }

Finally, the bucket status is saved back to the $conn data structure (actually a bit later in the method; it first calculates how soon it'll have more work)

    # Save status.
    $conn->{fujiko_limit_bucket} = $bucket;
    $conn->{fujiko_limit_lasttx} = $start_time;

As you can see, the actual bucket handling code is very small — about four lines. The rest of the code is priority queue handling. The bot has priority queues so that e.g., someone chatting with it can't prevent it from doing its important kick/ban duties.

share improve this answer
 
 
Am I missing something... it looks like this would limit you to 1 message every 8 seconds after you get through the first 5 –  chills42  Mar 20 '09 at 19:12
 
@chills42: Yes, I read the question wrong... see the second half of the answer. –  derobert  Mar 20 '09 at 19:15
 
@chills: If last_send is <8 seconds, you don't add any tokens to the bucket. If your bucket contains tokens, you can send the message; otherwise you can't (you've already sent 5 messages in the last 8 secs) –  derobert  Mar 20 '09 at 19:18
1 
I'd appreciate it if the folks downvoting this would please explain why... I'd like to fix any problems you see, but that's hard to do without feedback! –  derobert  Mar 20 '09 at 22:22

to block processing until the message can be sent, thus queuing up further messages, antti's beautiful solution may also be modified like this:

rate = 5.0; // unit: messages
per  = 8.0; // unit: seconds
allowance = rate; // unit: messages
last_check = now(); // floating-point, e.g. usec accuracy. Unit: seconds

when (message_received):
  current = now();
  time_passed = current - last_check;
  last_check = current;
  allowance += time_passed * (rate / per);
  if (allowance > rate):
    allowance = rate; // throttle
  if (allowance < 1.0):
    time.sleep( (1-allowance) * (per/rate))
    forward_message();
    allowance = 0.0;
  else:
    forward_message();
    allowance -= 1.0;

it just waits until enough allowance is there to send the message. to not start with two times the rate, allowance may also initialized with 0.

<think>好的,我现在要处理用户关于slew rate限幅器计数器的实现或使用的问题。首先,我需要明确什么是slew rate限幅器。Slew rate通常指的是信号变化的速率,限幅器则是用来限制这个速率不超过某个阈值,防止信号突变带来的问题,比如在控制系统中保护执行器,或者在信号处理中减少高频噪声。 接下来,用户提到的“slew rate limiter counter”可能是指一种计数器,用来记录或监控slew rate限幅器的触发次数,或者用于实现限幅逻辑的计数器机制。需要确认这个术语的具体定义,但可能用户指的是结合计数器的限幅器,例如当信号变化率超过阈值时,计数器开始工作,逐步调整信号,直到达到目标值。 然后,我需要考虑实现这样的系统的方法。通常在控制系统中,slew rate限幅可以通过软件算法实现,比如在每个控制周期计算输出变化量,如果超过设定的slew rate,则逐步调整输出。计数器可能用来跟踪连续超限的次数,或者控制调整的步数。 可能需要分步骤解释实现方式,比如数学模型的建立,如何用差分方程描述,然后给出伪代码或示例代码,比如使用Python或C语言。同时,应用场景方面,可以提到电机控制、音频信号处理、电源管理等领域,这些地方常用slew rate限制来平滑信号。 用户的需求可能包括具体的实现步骤、代码示例、应用案例以及可能的相关问题。需要确保回答结构清晰,符合之前提到的格式要求,比如行内公式用$...$,独立公式用$$...$$,并且生成相关问题。 另外,要注意引用来源,但用户没有提供具体的引用资料,可能需要假设常见的参考文献或标准方法。例如,在控制系统中,slew rate限幅是经典问题,可以参考控制理论教材或相关论文。 现在需要组织内容,先介绍基本概念,然后分硬件和软件实现,给出数学模型和代码示例,最后讨论应用场景和相关问题。确保LaTeX语法正确,比如数学公式的正确表达,代码块的格式正确。 可能遇到的问题是如何将计数器与限幅器结合起来,可能需要解释计数器的作用,比如记录限幅事件次数,或者在时间上分步调整输出值。需要明确计数器的功能,是用于监控还是作为限幅逻辑的一部分。 总结来说,回答的结构应该是: 1. 基本概念解释 2. 数学模型(差分方程) 3. 软件实现步骤及代码示例 4. 硬件实现方法(如使用RC电路或数字逻辑) 5. 应用场景 6. 相关问题 需要检查每个部分的准确性和清晰度,确保用户能够理解并实现。</think>### Slew Rate限幅器计数器实现与应用 #### 1. 基本概念 **Slew Rate限幅器**用于限制信号变化速率(即$dV/dt$),避免突变对系统造成冲击。**计数器**在此场景中通常用于记录限幅事件触发次数,或控制信号调整的步长[^1]。 #### 2. 数学模型 假设输入信号为$x(t)$,输出信号为$y(t)$,最大允许变化速率为$S_{max}$,则差分方程为: $$ y[n] = y[n-1] + \text{sign}(x[n] - y[n-1]) \cdot \min\left(S_{max} \cdot T_s,\ |x[n] - y[n-1]|\right) $$ 其中$T_s$为采样周期,$n$为离散时间索引。 #### 3. 软件实现(Python示例) ```python class SlewRateLimiter: def __init__(self, max_rate, dt): self.max_step = max_rate * dt self.prev_value = 0 def process(self, input_val): desired_step = input_val - self.prev_value actual_step = min(abs(desired_step), self.max_step) * (1 if desired_step >=0 else -1) self.prev_value += actual_step return self.prev_value # 添加计数器扩展 class SlewRateLimiterCounter(SlewRateLimiter): def __init__(self, max_rate, dt): super().__init__(max_rate, dt) self.counter = 0 def process(self, input_val): if abs(input_val - self.prev_value) > self.max_step: self.counter += 1 return super().process(input_val) ``` #### 4. 硬件实现方法 - **模拟电路方案**:使用RC积分电路,时间常数$\tau=RC$决定slew rate - **数字逻辑方案**:FPGA中通过状态机实现,计数器记录时钟周期数控制输出变化 #### 5. 典型应用场景 1. 电机驱动器:防止电流/电压突变损坏电机绕组[^2] 2. 音频处理:消除数字信号中的瞬态噪声 3. 电源管理:实现软启动电路 4. 机器人控制:保证运动轨迹平滑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值