BloomFilter

本文深入探讨了BloomFilter算法在大规模数据处理中的应用与优势,通过实例对比传统方法,展示了BloomFilter如何在节省内存的同时,提供接近O(1)的查询效率,特别适用于网络蜘蛛(web crawler)等场景。文章详细阐述了BloomFilter的工作原理,包括实例、算法步骤及参数选择,并提供了简洁的Java实现代码,旨在帮助开发者理解并应用这一高效的查找算法。

那些优雅的数据结构(1) : BloomFilter——大规模数据处理利器

Posted on  2011-01-02 19:08  苍梧 阅读( 38237) 评论( 26)   编辑  收藏

 

 

BloomFilter——大规模数据处理利器

 

  Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。

 

一. 实例 

  为了说明Bloom Filter存在的重要意义,举一个实例:

  假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

  1. 将访问过的URL保存到数据库。

  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

 

  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

  方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

 

  实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。 

 

二. Bloom Filter的算法 

 

  废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

    Bloom Filter算法如下:

    创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

 

(1) 加入字符串过程 

 

  下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

 

  图1.Bloom Filter加入字符串过程

  很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。

 

(2) 检查字符串是否存在的过程 

 

  下面是检查字符串str是否被BitSet记录过的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

 

  若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

  但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

 

(3) 删除字符串过程 

   字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

 

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

 

三. Bloom Filter参数选择 

 

   (1)哈希函数选择

     哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

   (2)Bit数组大小选择 

     哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

     同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。  

 

四. Bloom Filter实现代码 

    下面给出一个简单的Bloom Filter的Java实现代码:

 

复制代码
import java.util.BitSet;

publicclass BloomFilter 
{
/* BitSet初始分配2^24个bit */ 
privatestaticfinalint DEFAULT_SIZE =1<<25
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 571113313761 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */ 
private SimpleHash[] func =new SimpleHash[seeds.length];

public BloomFilter() 
{
for (int i =0; i < seeds.length; i++)
{
func[i] 
=new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}

// 将字符串标记到bits中
publicvoid add(String value) 
{
for (SimpleHash f : func) 
{
bits.set(f.hash(value), 
true);
}
}

//判断字符串是否已经被bits标记
publicboolean contains(String value) 
{
if (value ==null
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func) 
{
ret 
= ret && bits.get(f.hash(value));
}
return ret;
}

/* 哈希函数类 */
publicstaticclass SimpleHash 
{
privateint cap;
privateint seed;

public SimpleHash(int cap, int seed) 
{
this.cap = cap;
this.seed = seed;
}

//hash函数,采用简单的加权和hash
publicint hash(String value) 
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++
{
result 
= seed * result + value.charAt(i);
}
return (cap -1& result;
}
}
}
复制代码

 

 

 

参考文献:

 

[1]Pei Cao. Bloom Filters - the math.

http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html

[2]Wikipedia. Bloom filter. 

http://en.wikipedia.org/wiki/Bloom_filter


### Bloom Filter 数据结构概述 布隆过滤器是一种用于快速、节省内存地判断元素是否属于某个集合的数据结构[^5]。其核心在于使用位数组和多个哈希函数来表示集合成员关系,具有极高的查询效率和较低的存储开销。 #### 原理说明 布隆过滤器通过一系列独立随机分布的哈希函数将待加入集合的对象映射到位向量的不同位置上;当检查某对象是否存在于给定集合内时,只需验证这些对应索引处是否有标记即可完成判定过程。值得注意的是,由于可能存在不同输入经过相同哈希运算后指向同一地址的情况(即碰撞),因此即使所有测试均返回肯定结果也不能完全排除误判的可能性——这就是所谓的“假阳现象”。不过只要合理配置参数并选用足够多且均匀散列性质良好的哈希算法,则能够有效控制此类错误发生的几率至可接受范围内[^1]。 ```python import mmh3 from bitarray import bitarray class SimpleBloomFilter(object): def __init__(self, size=1000000, hash_num=7): self.size = size self.hash_num = hash_num self.bit_array = bitarray(size) self.bit_array.setall(0) def add(self, string): for seed in range(self.hash_num): result = mmh3.hash(string, seed) % self.size self.bit_array[result] = 1 def lookup(self, string): for seed in range(self.hash_num): result = mmh3.hash(string, seed) % self.size if not self.bit_array[result]: return "Nope" return "Probably yes" bloom_filter_example = SimpleBloomFilter() print(bloom_filter_example.lookup("hello")) bloom_filter_example.add("hello") print(bloom_filter_example.lookup("hello")) ``` 上述代码展示了如何创建一个简单的布隆过滤器类 `SimpleBloomFilter` 并对其进行基本操作。这里采用了 MurmurHash3 这种非加密级但性能优异的通用型哈希函数作为内部组件之一,并借助 Python 的第三方库 `bitarray` 来管理底层二进制序列[^2]。 #### 应用场景分析 鉴于布隆过滤器具备高效的存取特性及其特有的容错机制,在实际工程中有广泛的应用价值: - **缓存穿透防护**:防止恶意请求绕过本地缓存直接访问数据库造成压力过大; - **爬虫去重处理**:避免重复抓取已收录网页资源浪费带宽; - **黑名单/白名单匹配**:加速身份认证流程减少不必要的磁盘I/O次数; - **分布式系统一致性校验**:辅助节点间同步状态信息提高整体可靠性等[^4]。 然而需要注意的是,传统意义上的布隆过滤器并不支持元素移除功能,因为这可能会导致原本存在的条目被误删从而引发更多问题。针对这一局限性,研究者们提出了诸如计数式布隆过滤器(CBF) 或者 cuckoo filters 等改进版本以适应更复杂的需求环境[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值