Hash in Python

本文深入探讨Python hashlib模块的功能,包括多种哈希算法的使用方法、构造函数、属性及方法,以及如何利用这些功能进行文件哈希计算,并提供了一个实际的代码示例。此外,文章还介绍了哈希算法的基本概念、安全性考量以及使用注意事项。

14.1. hashlib — Secure hashes and message digests

New in version 2.5.

Source code: Lib/hashlib.py


This module implements a common interface to many different secure hash and message digest algorithms. Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2) as well as RSA’s MD5 algorithm (defined in Internet RFC 1321). The terms secure hash and message digest are interchangeable. Older algorithms were called message digests. The modern term is secure hash.

Note

 

If you want the adler32 or crc32 hash functions, they are available in the zlib module.

Warning

 

Some algorithms have known hash collision weaknesses, refer to the “See also” section at the end.

There is one constructor method named for each type of hash. All return a hash object with the same simple interface. For example: use sha1() to create a SHA1 hash object. You can now feed this object with arbitrary strings using the update() method. At any point you can ask it for the digest of the concatenation of the strings fed to it so far using the digest() or hexdigest() methods.

Constructors for hash algorithms that are always present in this module are md5()sha1()sha224()sha256()sha384(), and sha512(). Additional algorithms may also be available depending upon the OpenSSL library that Python uses on your platform.

For example, to obtain the digest of the string 'Nobody inspects the spammish repetition':

>>>
>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>>
>>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

A generic new() constructor that takes the string name of the desired algorithm as its first parameter also exists to allow access to the above listed hashes as well as any other algorithms that your OpenSSL library may offer. The named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>>
>>> h = hashlib.new('ripemd160')
>>> h.update("Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

This module provides the following constant attribute:

hashlib. algorithms

A tuple providing the names of the hash algorithms guaranteed to be supported by this module.

New in version 2.7.

hashlib. algorithms_guaranteed

A set containing the names of the hash algorithms guaranteed to be supported by this module on all platforms.

New in version 2.7.9.

hashlib. algorithms_available

A set containing the names of the hash algorithms that are available in the running Python interpreter. These names will be recognized when passed to new().  algorithms_guaranteed will always be a subset. The same algorithm may appear multiple times in this set under different names (thanks to OpenSSL).

New in version 2.7.9.

The following values are provided as constant attributes of the hash objects returned by the constructors:

hash. digest_size

The size of the resulting hash in bytes.

hash. block_size

The internal block size of the hash algorithm in bytes.

A hash object has the following methods:

hash. update ( arg )

Update the hash object with the string arg. Repeated calls are equivalent to a single call with the concatenation of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

Changed in version 2.7: The Python GIL is released to allow other threads to run while hash updates on data larger than 2048 bytes is taking place when using hash algorithms supplied by OpenSSL.

hash. digest ( )

Return the digest of the strings passed to the update() method so far. This is a string of digest_size bytes which may contain non-ASCII characters, including null bytes.

hash. hexdigest ( )

Like digest() except the digest is returned as a string of double length, containing only hexadecimal digits. This may be used to exchange the value safely in email or other non-binary environments.

hash. copy ( )

Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of strings that share a common initial substring.

14.1.1. Key derivation

Key derivation and key stretching algorithms are designed for secure password hashing. Naive algorithms such as sha1(password) are not resistant against brute-force attacks. A good password hashing function must be tunable, slow, and include a salt.

hashlib. pbkdf2_hmac ( namepasswordsaltroundsdklen=None )

The function provides PKCS#5 password-based key derivation function 2. It uses HMAC as pseudorandom function.

The string name is the desired name of the hash digest algorithm for HMAC, e.g. ‘sha1’ or ‘sha256’. password and salt are interpreted as buffers of bytes. Applications and libraries should limit password to a sensible value (e.g. 1024). salt should be about 16 or more bytes from a proper source, e.g. os.urandom().

The number of rounds should be chosen based on the hash algorithm and computing power. As of 2013, at least 100,000 rounds of SHA-256 is suggested.

dklen is the length of the derived key. If dklen is None then the digest size of the hash algorithm name is used, e.g. 64 for SHA-512.

>>>
>>> import hashlib, binascii
>>> dk = hashlib.pbkdf2_hmac('sha256', b'password', b'salt', 100000)
>>> binascii.hexlify(dk)
b'0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'

New in version 2.7.8.

Note

 

A fast implementation of pbkdf2_hmac is available with OpenSSL. The Python implementation uses an inline version of hmac. It is about three times slower and doesn’t release the GIL.

See also

Module  hmac
A module to generate message authentication codes using hashes.
Module  base64
Another way to encode binary hashes for non-binary environments.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
The FIPS 180-2 publication on Secure Hash Algorithms.
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
Wikipedia article with information on which algorithms have known issues and what that means regarding their use.

Python 文件Hash(MD5,SHA1)

 

import hashlib
import os,sys

def CalcSha1(filepath):
	with open(filepath,'rb') as f:
		sha1obj = hashlib.sha1()
		sha1obj.update(f.read())
		hash = sha1obj.hexdigest()
		print(hash)
		return hash

def CalcMD5(filepath):
	with open(filepath,'rb') as f:
		md5obj = hashlib.md5()
		md5obj.update(f.read())
		hash = md5obj.hexdigest()
		print(hash)
		return hash
		
if __name__ == "__main__":
	if len(sys.argv)==2 :
		hashfile = sys.argv[1]
		if not os.path.exists(hashfile):
			hashfile = os.path.join(os.path.dirname(__file__),hashfile)
			if not os.path.exists(hashfile):
				print("cannot found file")
			else
				CalcMD5(hashfile)
		else:
				CalcMD5(hashfile)
			#raw_input("pause")
	else:
		print("no filename")

使用Python进行文件Hash计算有两点必须要注意:

1、文件打开方式一定要是二进制方式,既打开文件时使用b模式,否则Hash计算是基于文本的那将得到错误的文件Hash(网上看到有人说遇到PythonHash计算错误在大多是由于这个原因造成的)。

2、对于MD5如果需要16位(bytes)的值那么调用对象的digest()而hexdigest()默认是32位(bytes),同理Sha1的digest()和hexdigest()分别产生20位(bytes)和40位(bytes)的hash

hash ( object )

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if they are of different types, as is the case for 1 and 1.0).


看核心编程时候有个叫hash的东西,呵呵,打开python文档看看:

hashable(可哈希性)

An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects which compare equal must have the same hash value.

(如果一个对象是可哈希的,那么在它的生存期内必须不可变(需要一个哈希函数),而且可以和其他对象比较(需要比较方法).比较值相同的对象一定有相同的哈希值)

翻译的比较生硬...简单的说就是生存期内可变的对象不可以哈希,就是说改变时候其id()是不变的.基本就是说列表,字典,集合了.


写一段代码验证一下:

a= [0,0,0]
b = {1:2,'c':9}
c = set(a)
string = 'hello'

class A():
    pass
a = A()
print hash(A)
print hash(a)
print hash(string)

print hash(c)
print hash(b)
print hash(a)

可以看出列表,字典,集合是无法哈希的,因为他们在改变值的同时却没有改变id,无法由地址定位值的唯一性,因而无法哈希.


hashlib是个专门提供hash算法的库,现在里面包括md5, sha1, sha224, sha256, sha384, sha512,使用非常简单、方便。 md5经常用来做用户密码的存储。而sha1则经常用作数字签名。
标签:  Python

代码片段(1)[全屏查看所有代码]

1. [代码][Python]代码     

?
1
2
3
4
5
6
7
8
9
10
#-*- encoding:gb2312 -*-
import hashlib
 
a = "a test string"
print hashlib.md5(a).hexdigest()
print hashlib.sha1(a).hexdigest()
print hashlib.sha224(a).hexdigest()
print hashlib.sha256(a).hexdigest()
print hashlib.sha384(a).hexdigest()
print hashlib.sha512(a).hexdigest()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值