A
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <bitset>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e6 + 10;
const int INF = 1e9 + 10;
bool vis[105];
int main(){
int n, x; scanf("%d%d", &n, &x);
for(int i = 1; i <= n; ++i) {
int a; scanf("%d", &a);
vis[a] = true;
}
int cnt = 0;
if(vis[x]) cnt++;
for(int i = 0; i < x; ++i) {
if(!vis[i]) cnt++;
}
printf("%d\n", cnt);
return 0;
}
B
题意:n个结点n-1条边组成一棵树,现在要把结点分成一个二分图,问最多能加多少条边
思路:直接统计两部分的结点数,求出两部分结点的乘积减去n - 1条边即可
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <bitset>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e6 + 10;
const int INF = 1e9 + 10;
vector<int> G[qq];
LL num[2];
bool vis[qq];
void Dfs(int u, int idx) {
num[idx]++;
vis[u] = true;
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i];
if(vis[v]) continue;
Dfs(v, idx ^ 1);
}
}
int main(){
int n; scanf("%d", &n);
for(int i = 1; i < n; ++i) {
int u, v; scanf("%d%d", &u, &v);
G[u].pb(v), G[v].pb(u);
}
Dfs(1, 0);
printf("%lld\n", num[0] * num[1] - (n - 1));
return 0;
}
C
题意:给出n,x, 要求输出n个不同的非负数xor的结果是x,如果不存在输出NO,最大数不超过1e6
思路:参考了题解的思路
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <bitset>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 2e5 + 10;
const int INF = 1e9 + 10;
int main(){
int n = 100000;
int maxn = 0;
int cnt = 0;
while(maxn > 0) {
if(n & 1) maxn = max(maxn, cnt);
n >>= 1;
cnt++;
}
int a = (1 << maxn);
int b = (1 << (maxn + 1));
int x;
scanf("%d%d", &n, &x);
if(n == 1) {
printf("YES\n%d\n", x);
} else if(n == 2) {
if(x == 0) puts("NO");
else printf("YES\n0 %d\n", x);
} else {
puts("YES");
int ans = 0;
for(int i = 1; i <= n - 3; ++i) {
ans ^= i;
printf("%d ", i);
}
if(ans == x) {
printf("%d %d %d\n", a, b, a + b);
} else {
printf("%d %d %d\n", a, a ^ ans ^ x, 0);
}
}
return 0;
}
D
题意:交互题,答案是一个长度为n的字符串,你可以输出一个字符串,机器会返回给你和答案串的Hamming distance,让你再最多询问15次的前提下求出某个1和0的位置,保证答案串中至少一个1和一个0
思路:首先通过两次询问可以确定答案串的第一个字符是1还是0,假设答案串的前m个字符都是0或者1,如果都是那么我们要找的答案大于m,如果不是,那么可以确定m以内有我们要找的答案
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <bitset>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e6 + 10;
const int INF = 1e9 + 10;
int Query(int n, int t) {
string str(n, '0');
for(int i = 0; i < t; ++i) {
str[i] = '1';
}
printf("? %s\n", str.c_str());
fflush(stdout);
int ans; scanf("%d", &ans);
return ans;
}
int res[2];
int main(){
int n; scanf("%d", &n);
int a = Query(n, 0), b = Query(n, 1);
int tmp;
if(a > b) { // find 0
res[1] = 1;
int l = 2, r = n;
while(l <= r) {
int m = (l + r) >> 1;
if(-Query(n, m) + a == m) {
l = m + 1;
} else {
tmp = m;
r = m - 1;
}
}
res[0] = tmp;
} else { //find 1
res[0] = 1;
int l = 2, r = n;
while(l <= r) {
int m = (l + r) >> 1;
if(-a + Query(n, m) == m) {
l = m + 1;
} else {
tmp = m;
r = m - 1;
}
// printf("%d %d %d\n", l, r, tmp);
}
res[1] = tmp;
}
printf("! %d %d\n", res[0], res[1]);
return 0;
}