Java 每日一道算法题(2021-07-14)

问题:给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

解析

假设题意是叫你在排序数组中寻找是否存在一个目标值,那么训练有素的读者肯定立马就能想到利用二分法在 O(\log n)O(logn) 的时间内找到是否存在目标值。但这题还多了个额外的条件,即如果不存在数组中的时候需要返回按顺序插入的位置,那我们还能用二分法么?答案是可以的,我们只需要稍作修改即可。

考虑这个插入的位置 \textit{pos}pos,它成立的条件为:

\textit{nums}[pos-1]<\textit{target}\le \textit{nums}[pos]
nums[pos−1]<target≤nums[pos]

其中 \textit{nums}nums 代表排序数组。由于如果存在这个目标值,我们返回的索引也是 \textit{pos}pos,因此我们可以将两个条件合并得出最后的目标:「在一个有序数组中找第一个大于等于 \textit{target}target 的下标」。

问题转化到这里,直接套用二分法即可,即不断用二分法逼近查找第一个大于等于 \textit{target}target 的下标 。下文给出的代码是笔者习惯的二分写法,\textit{ans}ans 初值设置为数组长度可以省略边界条件的判断,因为存在一种情况是 \textit{target}target 大于数组中的所有数,此时需要插入到数组长度的位置。

  复杂度分析

  • 时间复杂度:O(\log n)O(logn),其中 nn 为数组的长度。
  • 空间复杂度:O(1)O(1)。我们只需要常数空间存放若干变量。

代码实现:


    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while(left <= right){
            int mid = left + (right - left) / 2;
            if(target <= nums[mid]){
                right = mid - 1;
            } else{
                left = mid + 1;
            }
        }
        return left;
    }

 

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值