Completely Fairness Scheduler

本文介绍了Linux内核中完全公平调度器(CFS)的工作原理及其关键特性。CFS旨在通过公平分配CPU时间来最大化整体CPU利用率及交互性能。文章详细阐述了CFS如何通过虚拟运行时间来调度任务,并解释了调度周期、任务权重等概念。

Completely Fairness Scheduler is a task scheduler merged into the 2.6.23 release of the Linux kernel. It handles CPU resource allocation for executing processes and aims to maximize overall CPU utilization while also maximizing interactive performance.

CFS normally operates on individual tasks. It maintains the fairness in providing processor time to tasks by running every task with equal speed in paralell. The tasks may not be assigned the identical execution time, but they will have the same completion ratio. It may be desirable to group tasks and provide fair CPU time to each task group.

If we consider a simple situation that there are n tasks with the same weighting on the CPU and only one task can be run at a time, each task gets 1/n runtime.

These tasks are queued through a red black tree by the key called virtual runtime, denoted as vruntime.

                   

if curr.nice!=NICE_0_LOAD, where delta is the actual runtime of the task in a scheduling period. NICE_0_LOAD is the load of the process when nice=0. The value of nice affects the priority of the process. The term a->se.load is the weighting of the current process. The factor vruntime is proportional to delta, where delta increases, vruntime increases and inversely proportional to the weighting of the process. To calculate the value of delta, we use the following function:

                    delta = curr->sum_exec_runtime - curr->prev_sum_exec_runtime

The value of ideal_runtime denoted the ideal runtime for the current process in a scheduling preiord in which all the tasks will be scheduled and called once.

                   

where sum_runtimeis the scheduling period. The parametersum_runtimeis related to the number of running tasks.

                                           if the running tasks < 5,

                        else,

noted that the minimum granularity is 4ms. The parametercfs_rq.weight is the total weighting for all the tasks. Delta is obtained from the total runtime subtracted by the previous total runtime. Since CFS is designed in granularity. So deltais updated every 4ms. If delta exceeds the ideal runtime, the task need to be rescheduled which means it has run out of its time in this period.

For the initialization of a new process, the functionwake_up_new_task(struct task_struct *p, unsigned long clone_flags) changes the parameters of the CFS. It wakes up a task p and put it on the run queue. If the task p is not newly created or task p is not the current process, the function activates p byactivate_task(rq, p, 0). Otherwise it lets the scheduling class to do a new task startup byp->sched_class->task_new(rq, p).The function task_new_fair share the fairness runtime between the tasks, which updates the information of thecurrent process in update_curr() and the current virtual runtime inplace_entity() in order to insert it into the red black treenoted that new tasks get a chance to run but not allowed to monopolize the CPU by assigning the virtual runtime with min_vruntime. Afterwards, the function check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) checks whether the newly woken task preempt the current task by comparing their virtual runtime.

The function void __sched schedule(void) controls the scheduling algorithm of the CFS. It checks out the status of the tasks. Only running tasks are put into the red black tree, with state=0. Before scheduling a new process instead of the previous one, we need to update all the changes in the CFS regarding to the previous process, such as the virtual runtime of the previous process and re-insertion into the red black tree if theprocess is still in running state by performingprev->sched_class->put_prev_task(rq, prev). The next process will be selected and assigned as the current processcurr with next = pick_next_task(rq, prev).

The paragraphs above briefly conclude the simple running steps of a CFS. There are many factors to be considered in the functions such as the environment, type of cpu, and task groups.



Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值