Completely Fairness Scheduler

本文介绍了Linux内核中完全公平调度器(CFS)的工作原理及其关键特性。CFS旨在通过公平分配CPU时间来最大化整体CPU利用率及交互性能。文章详细阐述了CFS如何通过虚拟运行时间来调度任务,并解释了调度周期、任务权重等概念。

Completely Fairness Scheduler is a task scheduler merged into the 2.6.23 release of the Linux kernel. It handles CPU resource allocation for executing processes and aims to maximize overall CPU utilization while also maximizing interactive performance.

CFS normally operates on individual tasks. It maintains the fairness in providing processor time to tasks by running every task with equal speed in paralell. The tasks may not be assigned the identical execution time, but they will have the same completion ratio. It may be desirable to group tasks and provide fair CPU time to each task group.

If we consider a simple situation that there are n tasks with the same weighting on the CPU and only one task can be run at a time, each task gets 1/n runtime.

These tasks are queued through a red black tree by the key called virtual runtime, denoted as vruntime.

                   

if curr.nice!=NICE_0_LOAD, where delta is the actual runtime of the task in a scheduling period. NICE_0_LOAD is the load of the process when nice=0. The value of nice affects the priority of the process. The term a->se.load is the weighting of the current process. The factor vruntime is proportional to delta, where delta increases, vruntime increases and inversely proportional to the weighting of the process. To calculate the value of delta, we use the following function:

                    delta = curr->sum_exec_runtime - curr->prev_sum_exec_runtime

The value of ideal_runtime denoted the ideal runtime for the current process in a scheduling preiord in which all the tasks will be scheduled and called once.

                   

where sum_runtimeis the scheduling period. The parametersum_runtimeis related to the number of running tasks.

                                           if the running tasks < 5,

                        else,

noted that the minimum granularity is 4ms. The parametercfs_rq.weight is the total weighting for all the tasks. Delta is obtained from the total runtime subtracted by the previous total runtime. Since CFS is designed in granularity. So deltais updated every 4ms. If delta exceeds the ideal runtime, the task need to be rescheduled which means it has run out of its time in this period.

For the initialization of a new process, the functionwake_up_new_task(struct task_struct *p, unsigned long clone_flags) changes the parameters of the CFS. It wakes up a task p and put it on the run queue. If the task p is not newly created or task p is not the current process, the function activates p byactivate_task(rq, p, 0). Otherwise it lets the scheduling class to do a new task startup byp->sched_class->task_new(rq, p).The function task_new_fair share the fairness runtime between the tasks, which updates the information of thecurrent process in update_curr() and the current virtual runtime inplace_entity() in order to insert it into the red black treenoted that new tasks get a chance to run but not allowed to monopolize the CPU by assigning the virtual runtime with min_vruntime. Afterwards, the function check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) checks whether the newly woken task preempt the current task by comparing their virtual runtime.

The function void __sched schedule(void) controls the scheduling algorithm of the CFS. It checks out the status of the tasks. Only running tasks are put into the red black tree, with state=0. Before scheduling a new process instead of the previous one, we need to update all the changes in the CFS regarding to the previous process, such as the virtual runtime of the previous process and re-insertion into the red black tree if theprocess is still in running state by performingprev->sched_class->put_prev_task(rq, prev). The next process will be selected and assigned as the current processcurr with next = pick_next_task(rq, prev).

The paragraphs above briefly conclude the simple running steps of a CFS. There are many factors to be considered in the functions such as the environment, type of cpu, and task groups.



先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值