15.算法习题之斐波那契数列

这篇博客介绍了如何利用矩阵乘法求解斐波那契数列,揭示了递归优化的通用方法,并提供了四个算法习题,包括台阶问题、母牛增长模型、达标字符串计数和瓷砖铺设问题,旨在锻炼读者的算法思维和问题解决能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求斐波那契数列矩阵乘法的方法

1)斐波那契数列的线性求解(O(N))的方式非常好理解

2)同时利用线性代数,也可以改写出另一种表示

| F(N) , F(N-1) | = | F(2), F(1) | * 某个二阶矩阵的N-2次方

3)求出这个二阶矩阵,进而最快求出这个二阶矩阵的N-2次方

类似斐波那契数列的递归优化

如果某个递归,除了初始项之外,具有如下的形式

F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck 和k都是常数)

并且这个递归的表达式是严格的、不随条件转移的

那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)

习题1 斐波那契数列矩阵乘法方式的实现

public static int f1(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		return f1(n - 1) + f1(n - 2);
	}

	public static int f2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		int res = 1;
		int pre = 1;
		int tmp = 0;
		for (int i = 3; i <= n; i++) {
			tmp = res;
			res = res + pre;
			pre = tmp;
		}
		return res;
	}

	// O(logN)
	public static int f3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		// [ 1 ,1 ]
		// [ 1, 0 ]
		int[][] base = { 
				{ 1, 1 }, 
				{ 1, 0 } 
				};
		int[][] res = matrixPower(base, n - 2);
		return res[0][0] + res[1][0];
	}

	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] t = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = product(res, t);
			}
			t = pro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值