Numerical Analysis : Several Interpolation Methods

本文探讨了三次样条算法在计算机图形学中的应用,特别是在字体设计领域。通过对比多项式插值、切比雪夫插值及三次样条插值方法,验证了三次样条对于曲线平滑度的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[This is actually my project report for my Numerical Analysis course this semester]

* Cubic Spline Algorithm application in Typeface Design

As known Cubic Spline is usually the best choice in computer graphics applications, which have 2nd order continuity. If Typeface Design ([Knuth 1979] – this guy again !), each dimension (X & Y) should be applied with a Cubic Spline algorithm. Then, the curve nodes will be [Xi, Yi].

My work is as:

p7


* Polynomial & Chebyshev & Cubic Spline Interpolation

The target function: f(x) = (1 + 6 * x ^ 2) ^ –1    (A typical Runge Function)

Polynomial Interpolation (Newton Form)

Ck = (Yk - Pk-1(xk)) / (Xk - X0)(Xk - X1)..(Xk - Xk-1) is used to calculate coefficiences;

u = u (X - Xi) + Ci (Horner Method) is used to compute the final results.

p8a

The Runge Phenomena is really obvious … this is why Polynomial is a bad choice for a wide range of interpolation.

Chebyshev:

Xi = cos[(i - 1) * PI / 20] (1 <= i <= 21)

p8b

Cubic Spline Interpolation:

p8c

Much better isn’t it : )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值