Bresenham快速画直线算法

本文介绍了Bresenham算法的基本原理,通过避免浮点运算提高效率,适用于嵌入式系统。算法核心是通过累加误差ξ进行判断,实现伪代码并讨论了针对不同情况的处理,包括dy > dx的特殊情况。最后提到了在Opencv 2.0上的测试和代码适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、             算法原理简介:

算法原理的详细描述及部分实现可参考:

http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html

    Fig. 1

       假设以(x, y)为绘制起点,一般情况下的直观想法是先求m = dy /dx(即x每增加1 y的增量),然后逐步递增x, 设新的点为x1 = x + j, y1 = round(y + j * m)。可以看到,这个过程涉及大量的浮点运算,效率上是比较低的(特别是在嵌入式应用中,DSP可以一周期内完成2次乘法,一次浮点却要上百个周期)。

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值