第十六周作业:
526. Beautiful Arrangement
解题思路:
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:
- The number at the ith position is divisible by i.
- i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2 Output: 2 Explanation:
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
- N is a positive integer and will not exceed 15.
思路:在从1到N的一串数中,求解有多少种“漂亮的放法”,满足当前元素可以被当前位置数整除,或者当前位置数可以被当前元素整除。是一道排列组合的问题,但是如果用枚举法,复杂度将达到O(n!),显然是不可行的。而考虑到可以采用递归来实现,从第一个位置开始判断,当第一个位置是可以的时候,我们从末尾向前逐一调用这个方法来判断。但是为了避免被重复判断,需要将判断过满足条件的放到末尾。当一个i值全部递归树完毕后,我们再将换位的值换回来以保证i+1后面的序列的正确性。
代码如下:
class Solution {
public:
int countArrangement(int N) {
vector<int> arrangement(N);
iota(arrangement.begin(), arrangement.end(), 1);
return countArrangementHelper(N, &arrangement);
}
private:
int countArrangementHelper(int n, vector<int> *arrangement) {
if (n <= 0) {
return 1;
}
int count = 0;
for (int i = 0; i < n; ++i) {
if ((*arrangement)[i] % n == 0 || n % (*arrangement)[i] == 0) {
swap((*arrangement)[i], (*arrangement)[n - 1]);
count += countArrangementHelper(n - 1, arrangement);
swap((*arrangement)[i], (*arrangement)[n - 1]);
}
}
return count;
}
};