7、磁性纳米线的曲率和扭转效应研究

磁性纳米线的曲率和扭转效应研究

1. 磁畴壁动力学

在表达式中,参数 $\beta^{*} {zl}$ 对非绝热性的本征系数 $\beta {zl}$ 进行了重整化。磁畴壁(DW)宽度和斜率的平衡动态值如下:
- DW 宽度:$\delta \approx \sqrt{\frac{A}{K + \pi M_s^2\gamma_0 u\kappa \sin \varPhi_0}}$
- DW 斜率:$Y \approx -\ell(\tau\ell + \frac{\pi}{4}\frac{M_s}{\gamma_0K p\beta_{zl}u\kappa \sin \varPhi_0})$
其中,平衡相位 $\varPhi_0 = u/u_w$。当超过 Walker 极限时,磁畴壁会呈现出振荡运动。

根据相关表达式,纳米线的几何形状可在较大范围内控制磁畴壁的速度。磁畴壁的运动方向由 $\alpha_g - \beta_{zl} + \beta^{ } {zl}$ 项的符号决定。扭转的变化使得本征 Gilbert 阻尼 $\alpha_g$ 和非绝热系数 $\beta {zl}$ 之间产生相互作用。当 $p\tau < 0$ 时,磁畴壁总是沿 $u$ 的方向移动;当 $p\tau > 0$ 时,系统的行为在性质上有所不同:
- 当 $\beta_{zl} \ll |\beta^{
} {zl}|$ 时,磁畴壁具有负迁移率($\dot{q} < 0$)。
- 若 $\beta^{*}
{zl} \gg \alpha_g, \beta_{zl}$,非绝

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值