Tree Traversals (25)

本文介绍了一种根据给定的后序遍历和中序遍历序列构建二叉树,并输出该树的层次遍历序列的方法。通过递归创建二叉树节点,最终实现了从输入序列到层次遍历输出的有效转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Suppose that all the keys in a binary tree are distinct positive integers.  Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.

输入描述:

Each input file contains one test case.  For each case, the first line gives a positive integer N (<=30), the total number of nodes in the binary tree.  The second line gives the postorder sequence and the third line gives the inorder sequence.  All the numbers in a line are separated by a space.


输出描述:

For each test case, print in one line the level order traversal sequence of the corresponding binary tree.  All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

输入例子:

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

输出例子:

4 1 6 3 5 7 2

我的代码:

#include<iostream>
#include<queue>
using namespace std;
struct Node
{
    int data;
    Node *lchild,*rchild;
};
Node *creat(int h[],int z[],int n)
{
    Node *t;
	int i;
    if(n==0) return NULL;
    t=new Node;
    t->data=h[n-1];
    for(i=0;i<n;i++)
    {
        if(z[i]==h[n-1]) break;
    }
    t->lchild=creat(h,z,i);
    t->rchild=creat(h+i,z+i+1,n-i-1);
    return t;
}
void ceng(Node *t)
{
    queue<Node*>q;
    int a[101],i,k=0;
    if(t)
    {
        q.push(t);
        while(!q.empty())
        {
            t=q.front();
            q.pop();
            a[k++]=t->data;
            if(t->lchild) q.push(t->lchild);
            if(t->rchild) q.push(t->rchild);
        }
    }
    for(i=0;i<k;i++)
	{
		if(i==0) cout<<a[i];
		else cout<<" "<<a[i];
	}
}
int main()
{
    int n,i,b[101],c[101];
    cin>>n;
    for(i=0;i<n;i++) cin>>b[i];
    for(i=0;i<n;i++) cin>>c[i];
    Node *r=creat(b,c,n);
    ceng(r);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值