How Linux file permissions work

本文详细介绍了Linux文件系统的三种用户类别:用户、组和其他,并解释了读取、写入和执行这三种基本权限的作用及如何使用八进制数值表示这些权限。

原文链接


How Linux file permissions work

by NIX CRAFT on FEBRUARY 13, 2006 · 23 COMMENTS· LAST UPDATED SEPTEMBER 11, 2007

in CENTOSDEBIAN / UBUNTUFILE SYSTEM

Linux (and almost all other Unixish systems) have three user classes as follows:

  • User (u): The owner of file
  • Group (g): Other user who are in group (to access files)
  • Other (o): Everyone else

You can setup following mode on each files. In a Linux and UNIX set of permissions is called as mode:

  • Read (r)
  • Write (w)
  • Execute (x)

However, above three modes or permission have different meaning for file and directory:

Linux Read mode permissions

  • Read access on a file allows you to view file
  • Read access on a directory allows you to view directory contents with ls command

Write mode permissions

  • Write access on a file allows you to write to file
  • Write access on a directory allows you to remove or add new files

Execute mode permissions

  • Execute access on a file allows to run program or script
  • Execute access on a directory allows you access file in the directory

Octal numbers and permissions

You can use octal number to represent mode/permission:

  • r: 4
  • w: 2
  • x: 1

For example, for file owner you can use octal mode as follows. Read, write and execute (full) permission on a file in octal is
0+r+w+x = 0+4+2+1 = 7

Only Read and write permission on a file in octal is
0+r+w+x = 0+4+2+0 = 6

Only read and execute permission on a file in octal is
0+r+w+x = 0+4+0+1 = 5

Use above method to calculate permission for group and others. Let us say you wish to give full permission to owner, read & execute permission to group, and read only permission to others, then you need to calculate permission as follows:
User = r+w+x = 0+4+2+1 = 7
Group= r+w+x = 0+4+2+0 = 6
Others = r+w+x = 0+0+0+1 = 1

Effective permission is 761.

chmod command

To setup file permission you need to use chmod command:
chmod {mode} {file-name}

To setup file permission 761 you need to use chmod command as follows:
# chmod 0761 file
To setup a file readable by anyone and writable by the owner only:
# chmod 644 file
To setup a file readable/executable by everyone and writable by the owner only:
# chmod 755 file
You can change permissions for all files and directories within a directory by using the -R option on the chmod command. For example, to setup others read and execute access to all files and directories (and files and directories within directories), you need to type command as follows (i.e. change the modes of the file hierarchies rooted in the files instead of just the files themselves):
# chmod -R 755 directory-name/

How is emlog used? 1: Configure, compile, and install emlog If you want to compile emlog for use with the currently running kernel, simply run make Otherwise, you have to set either KVER (for linux kernel sources, located in /lib/modules/<KVER>/build) or KDIR (for any other path): make KDIR=/usr/src/linux Two files should be generated: the kernel module itself (emlog.ko), and the nbcat utility that will be described later. You can use them directly from the current directory or you can install them via make install 2: Load the emlog module into the kernel If you chose to use emlog directly from the current directly, insert the module into the kernel using the insmod command insmod emlog.ko Otherwise, modprobe should work: modprobe emlog To specify a different maximum buffer size limit: modprobe emlog emlog_max_size=2048 If successful, a message similar to emlog:emlog_init: version 0.70 running, major is 251, MINOR is 1, max size 1024 K. should show up in your kernel log (type dmesg to see it). You can also verify that the module has been inserted by typing lsmod or cat /proc/modules. 3: Create device files for emlog By default, a device file /dev/emlog is created (if you have devtmpfs mounted onto /dev and/or have udev running) with a minimal allocated buffer. It's ready to be written to/read from. If you need more devices/buffers, you should can use the mkemlog program to create device files that your processes can write to. Usage mkemlog <logdevname> [size_in_kilobytes] [mode] 3.1: Examples usage mkemlog Create a log file with a 8k buffer with file permissions 0660 mkemlog /tmp/testlog Create a log file with a 17k buffer with file permissions 0660 mkemlog /tmp/testlog 17 Create a log file with a 12k buffer with file permissions 0644 mkemlog /tmp/testlog_12k 12 0644 Create a log file with a 18k buffer with file permissions 0644, owned by a user with UID==1000. mkemlog /tmp/testlog_18k 18 0644 1000 The mkemlog requires the /dev/emlog file to be cemlog
最新发布
04-02
我该怎么在mobaxterm中完成How is emlog used? 1: Configure, compile, and install emlog If you want to compile emlog for use with the currently running kernel, simply run make Otherwise, you have to set either KVER (for linux kernel sources, located in /lib/modules/<KVER>/build) or KDIR (for any other path): make KDIR=/usr/src/linux Two files should be generated: the kernel module itself (emlog.ko), and the nbcat utility that will be described later. You can use them directly from the current directory or you can install them via make install 2: Load the emlog module into the kernel If you chose to use emlog directly from the current directly, insert the module into the kernel using the insmod command insmod emlog.ko Otherwise, modprobe should work: modprobe emlog To specify a different maximum buffer size limit: modprobe emlog emlog_max_size=2048 If successful, a message similar to emlog:emlog_init: version 0.70 running, major is 251, MINOR is 1, max size 1024 K. should show up in your kernel log (type dmesg to see it). You can also verify that the module has been inserted by typing lsmod or cat /proc/modules. 3: Create device files for emlog By default, a device file /dev/emlog is created (if you have devtmpfs mounted onto /dev and/or have udev running) with a minimal allocated buffer. It's ready to be written to/read from. If you need more devices/buffers, you should can use the mkemlog program to create device files that your processes can write to. Usage mkemlog <logdevname> [size_in_kilobytes] [mode] 3.1: Examples usage mkemlog Create a log file with a 8k buffer with file permissions 0660 mkemlog /tmp/testlog Create a log file with a 17k buffer with file permissions 0660 mkemlog /tmp/testlog 17 Create a log file with a 12k buffer with file permissions 0644 mkemlog /tmp/testlog_12k 12 0644 Create a log file with a 18k buffer with file permissions 0644, owned by a user with UID==1000. mkemlog /tmp/testlog_18k 18 0644 1000 The mkemlog requires the /dev/emlog
04-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值