leetcode 300. Longest Increasing Subsequence

本文介绍了一种求解最长递增子序列(LIS)问题的动态规划算法,该算法能在O(n²)的时间复杂度内解决问题,并探讨了如何进一步优化至O(nlogn)的时间复杂度。通过具体示例,展示了状态转移方程的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

动态规划

  • 状态 state[i]表示前i个数字中以第i个结尾的LIS的长度

  • 初始化: 以每一位结尾都初始化为1

  • 状态转移方程:state[i] = max(state[j] + 1),其中 j < i && num[j] <= num[i]

  • 结果:max(state[i], i从0到n-1)

public class Solution {
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        int[] state = new int[nums.length];
        int max = 0;
        for (int i = 0; i < nums.length; i++) {
            state[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    state[i] = state[i] > state[j] + 1 ? state[i] : state[j] + 1;
                }
            }
            if (state[i] > max) {
                max = state[i];
            }
        }

        return max;
    }
}

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值