110. Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
解法
分治,判断左子树是不是平衡树,判断右子树是不是平衡树。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
boolean left = isBalanced(root.left);
boolean right = isBalanced(root.right);
if (Math.abs(maxDepth(root.left) - maxDepth(root.right)) > 1) {
return false;
}
if (!left || !right) {
return false;
}
return true;
}
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int left = maxDepth(root.left) + 1;
int right = maxDepth(root.right) + 1;
return left > right ? left : right;
}
}
解法二
解法一效率太低,是由于进行了两层分治算法,其实只用一层就可以,在计算每一层的深度时,判断是否相差大于1。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return maxDepth(root) != -1;
}
private int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int left = maxDepth(root.left);
int right = maxDepth(root.right);
if (left == -1 || right == -1 || Math.abs(left-right) > 1) {
return -1;
}
return Math.max(left, right) + 1;
}
}
247

被折叠的 条评论
为什么被折叠?



