Greatest Common Increasing
Subsequence
Time Limit: 2000/1000 MS
(Java/Others) Memory Limit:
65536/32768 K (Java/Others)
Total Submission(s): 1065
Accepted Submission(s):
319
Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just
need output the length of the subsequence.
Input
Each sequence is described with M - its length (1
<= M <= 500) and M integer numbers Ai
(-2^31 <= Ai < 2^31) - the sequence
itself.
Output
output print L - the length of the greatest common increasing
subsequence of both sequences.
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
Sample Output
2
Source
ACM暑期集训队练习赛(二)
Recommend
lcy
此题是最长上升子序列的升级版,就是求两个序列的相同最长上升子序列,思路和简单的最长上升子序列相似,只不过多了一个判断第二个序列是否合适的条件,第二个序列存储的时候用结构体记下位置和数值,然后排序,在第一个序列里面求最长上升子序列,状态转移方程如下:
c[i]=max(c[j]+1)(1<=j<i,a[j]<a[i]并且在第二个序列中a[j],a[i]的位置都存在且a[j]的位置小于a[i]的位置);还要注意一点,题目没说清楚两个测试数据之间要输出一个空行的
,害我PE了两次,郁闷啊

代码如下:
#include<stdio.h>
#include<stdlib.h>
struct point {
int num,index;
}b[505];
int a[505],c[505];
int cmp(const void *e,const void *f)
{
struct point *c,*d;
c=(struct point *)e;
d=(struct point *)f;
return c->num-d->num;
}
int search(int snum,int n)
{
int low,hig,mid;
low=0;hig=n-1;
while(low<=hig)
{
mid=(low+hig)/2;
if(snum>b[mid].num)
low=mid+1;
else if(snum==b[mid].num)
return b[mid].index;
else hig=mid-1;
}
if(b[mid].num==snum)return b[mid].index;
return -1;
}
int main()
{
int i,j,m,n,t,s,k,max,flag=0;
scanf("%d",&t);
for(flag=1;flag<=t;flag++)
{
scanf("%d",&m);
for(i=1;i<=m;i++)
scanf("%d",&a[i]);
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&b[i].num);
b[i].index=i;
}
qsort(b,n,sizeof(b[0]),cmp);
if(search(a[1],n)!=-1)
c[1]=1;
else c[1]=0;
for(i=2;i<=m;i++)
{
k=search(a[i],n);
if(k==-1){c[i]=0;continue;}
max=0;
for(j=1;j<i;j++)
if(a[j]<a[i]&&max<c[j])
{
s=search(a[j],n);
if(s<k&&s!=-1)
max=c[j];
}
c[i]=max+1;
}
max=0;
for(i=1;i<=m;i++)
if(max<c[i])
max=c[i];
printf("%d\n",max);
if(flag<t)printf("\n");
}
return 0;
}