Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3] is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3] is not:
1
/ \
2 2
\ \
3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == nullptr) return true;
return isSame(root->left, root->right);
}
private:
bool isSame(TreeNode* r1, TreeNode* r2) {
if (r1 == nullptr || r2 == nullptr) return r2 == r1;
return isSame(r1->left, r2->right) && r1->val == r2->val && isSame(r1->right, r2->left);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == nullptr) return true;
stack<TreeNode*> s1;
stack<TreeNode*> s2;
TreeNode* p1 = root->left;
TreeNode* p2 = root->right;
while (p1 != nullptr || !s1.empty()) {
if (p1 == nullptr) {
if (p2 != nullptr) return false;
p1 = s1.top();
s1.pop();
p2 = s2.top();
s2.pop();
if (p1->val != p2->val) return false;
p1 = p1->right;
p2 = p2->left;
}
else {
if (p2 == nullptr) return false;
s1.push(p1);
s2.push(p2);
p1 = p1->left;
p2 = p2->right;
}
}
if (p2 == nullptr && s2.empty()) return true;
return false;
}
};