(yolov8) F:\yolov8>yolo detect val data=widerperson.yaml model=yolov8n.pt
Ultralytics 8.3.129 Python-3.9.21 torch-2.6.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB)
YOLOv8n summary (fused): 72 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
val: Fast image access (ping: 0.00.0 ms, read: 103.2210.6 MB/s, size: 55.1 KB)
val: Scanning F:\yolov8\datasets\widerperson\val\labels... 22 images, 0 backgrounds, 22 corrupt: 100%|██████████| 22/22 [00:00<00:00, 814.59it/s]
val: F:\yolov8\datasets\widerperson\val\images\000040.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000041.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000042.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000044.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000045.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000046.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000048.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000049.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000050.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000051.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000059.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000060.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000061.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000065.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000079.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000080.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000081.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000085.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000088.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000089.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000091.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: F:\yolov8\datasets\widerperson\val\images\000099.jpg: ignoring corrupt image/label: Label class 1 exceeds dataset class count 1. Possible class labels are 0-0
val: New cache created: F:\yolov8\datasets\widerperson\val\labels.cache
WARNING No images found in F:\yolov8\datasets\widerperson\val\labels.cache, training may not work correctly. See https://docs.ultralytics.com/datasets for dataset formatting guidance.
Traceback (most recent call last):
File "F:\anaconda\envs\yolov8\lib\runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "F:\anaconda\envs\yolov8\lib\runpy.py", line 87, in _run_code
exec(code, run_globals)
File "F:\anaconda\envs\yolov8\Scripts\yolo.exe\__main__.py", line 7, in <module>
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\cfg\__init__.py", line 981, in entrypoint
getattr(model, mode)(**overrides) # default args from model
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\model.py", line 630, in val
validator(model=self.model)
File "F:\anaconda\envs\yolov8\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\validator.py", line 190, in __call__
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\models\yolo\detect\val.py", line 317, in get_dataloader
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val")
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\models\yolo\detect\val.py", line 304, in build_dataset
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\data\build.py", line 109, in build_yolo_dataset
return dataset(
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\data\dataset.py", line 87, in __init__
super().__init__(*args, channels=self.data["channels"], **kwargs)
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\data\base.py", line 113, in __init__
self.labels = self.get_labels()
File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\data\dataset.py", line 192, in get_labels
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
ValueError: not enough values to unpack (expected 3, got 0)
使用yolov8官方验证工具给出的结果,分析一下问题所在
最新发布