LintCode 106: Convert Sorted List to Binary Search Tree (并不简单)

本文介绍了一种将升序链表转换为高度平衡的二叉搜索树的方法。通过双指针技术找到链表的中点,并递归地构建左右子树,最终形成平衡的二叉搜索树。代码实现细节复杂,需注意链表操作和递归过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. Convert Sorted List to Binary Search Tree
    中文English
    Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

Example
Example 1:
Input: array = [1,2,3]
Output:
2
/
1 3

Example 2:
Input: [2,3,6,7]
Output:
3
/
2 6

7

Explanation:
There may be multi answers, and you could return any of them.

解法1:思路:先用双指针找到中间节点,然后递归。时间复杂度O(nlogn)。
注意:这种有链表操作又有递归的情况代码并不好写,容易出错。需要特别仔细。

  1. 以p1为节点,但是p1从while出来后其前节点pre要保存下来。然后pre->next=NULL,这样就相当于把两个子链表断开了。要不然左子链表一直到整个链表结束才结束。

代码如下:

/**
 * Definition of ListNode
 * class ListNode {
 * public:
 *     int val;
 *     ListNode *next;
 *     ListNode(int val) {
 *         this->val = val;
 *         this->next = NULL;
 *     }
 * }
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */


class Solution {
public:
    /*
     * @param head: The first node of linked list.
     * @return: a tree node
     */
    TreeNode * sortedListToBST(ListNode * head) {
        if (!head) return NULL;
        
        return helper(head);
    }
    
private:
    TreeNode * helper(ListNode * head) {
        if (!head) return NULL;
        if (!head->next) return new TreeNode(head->val);
        
        ListNode * p1 = head, * p2 = head, * pre = head;

        while(p2 && p2->next) {
            pre = p1;
            p1 = p1->next;
            p2 = p2->next->next;
            
        }
        //now p1 is the mid of the list;
        TreeNode * mid = new TreeNode(p1->val);
        pre->next = NULL;
        mid->left = helper(head);
        mid->right = helper(p1->next);

        return mid;
    }
};

稍微改了一下,这种写法也可以。

   
    TreeNode * helper(ListNode * head) {
        if (!head) return NULL;
        if (!head->next) return new TreeNode(head->val);
        
        ListNode * p1 = head, * p2 = head, * pre = head;
        while(p2 && p2->next) {
            pre = p1;
            p1 = p1->next;
            p2 = p2->next;
            if (p2) p2 = p2->next;
        }
        //now p1 is the mid of the list;
        TreeNode * mid = new TreeNode(p1->val);
        pre->next = NULL;
        mid->left = helper(head);
        mid->right = helper(p1->next);
        return mid;
    }

这个写法也可以:以这个版本为准比较好。

    TreeNode * helper(ListNode * head) {
        if (!head) return NULL;
        if (!head->next) return new TreeNode(head->val);
        
        ListNode * p1 = head, * p2 = head->next, * pre = head;

        while(p2) {
            pre = p1;
            p1 = p1->next;
            p2 = p2->next;
            if (p2) p2 = p2->next;
        }
        //now p1 is the mid of the list;
        TreeNode * mid = new TreeNode(p1->val);
        pre->next = NULL;
        mid->left = helper(head);
        mid->right = helper(p1->next);

        return mid;
    }
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 华为移动服务(Huawei Mobile Services,简称 HMS)是一个全面开放的移动服务生态系统,为企业和开发者提供了丰富的工具和 API,助力他们构建、运营和推广应用。其中,HMS Scankit 是华为推出的一款扫描服务 SDK,支持快速集成到安卓应用中,能够提供高效且稳定的二维码和条形码扫描功能,适用于商品扫码、支付验证、信息获取等多种场景。 集成 HMS Scankit SDK 主要包括以下步骤:首先,在项目的 build.gradle 文件中添加 HMS Core 库和 Scankit 依赖;其次,在 AndroidManifest.xml 文件中添加相机访问和互联网访问权限;然后,在应用程序的 onCreate 方法中调用 HmsClient 进行初始化;接着,可以选择自定义扫描界面或使用 Scankit 提供的默认扫描界面;最后,实现 ScanCallback 接口以处理扫描成功和失败的回调。 HMS Scankit 内部集成了开源的 Zxing(Zebra Crossing)库,这是一个功能强大的条码和二维码处理库,提供了解码、生成、解析等多种功能,既可以单独使用,也可以与其他扫描框架结合使用。在 HMS Scankit 中,Zxing 经过优化,以更好地适应华为设备,从而提升扫描性能。 通常,ScanKitDemoGuide 包含了集成 HMS Scankit 的示例代码,涵盖扫描界面的布局、扫描操作的启动和停止以及扫描结果的处理等内容。开发者可以参考这些代码,快速掌握在自己的应用中实现扫码功能的方法。例如,启动扫描的方法如下: 处理扫描结果的回调如下: HMS Scankit 支持所有安卓手机,但在华为设备上能够提供最佳性能和体验,因为它针对华为硬件进行了
【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值