- Subarray Sums Divisible by K
Medium
Given an integer array nums and an integer k, return the number of non-empty subarrays that have a sum divisible by k.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [4,5,0,-2,-3,1], k = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by k = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Example 2:
Input: nums = [5], k = 9
Output: 0
Constraints:
1 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
2 <= k <= 104
解法1:前缀和数组+hashmap。
注意
- i…j可以整除说明presums[i] % k == presums[j] %k. 所以我们保存<remainder, freq>的hashmap就可以。
- remainder可以是负数。 比如-2%5=-2。 3%5=3。但是它们的差是5,可以被5整除。所以 remainder = remainder < 0 ? remainder + k : remainder;
- remainderFreq[0] = 1; 不然会漏一个。
class Solution {
public:
int subarraysDivByK(vector<int>& nums, int k) {
int n = nums.size();
vector<int> presums(n + 1, 0);
unordered_map<int, int> remainderFreq; //<remainder, freq>
int res = 0;
remainderFreq[0] = 1;
for (int i = 1; i <= n; i++) {
presums[i] = presums[i - 1] + nums[i - 1];
int remainder = presums[i] % k;
remainder = remainder < 0 ? remainder + k : remainder;
if (remainderFreq.find(remainder) != remainderFreq.end()) {
res += remainderFreq[remainder];
}
remainderFreq[remainder]++;
}
return res;
}
};
该篇文章介绍了一种算法,用于解决给定整数数组nums和整数k,计算满足元素之和能被k整除的非空子数组数量。使用前缀和数组和哈希映射的方法,记录每个余数出现的频率来求解。
717

被折叠的 条评论
为什么被折叠?



