- Design Circular Queue
Medium
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
MyCircularQueue(k) Initializes the object with the size of the queue to be k.
int Front() Gets the front item from the queue. If the queue is empty, return -1.
int Rear() Gets the last item from the queue. If the queue is empty, return -1.
boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
boolean isEmpty() Checks whether the circular queue is empty or not.
boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
Example 1:
Input
[“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 1000
0 <= value <= 1000
At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.
Accepted
196,050
Submissions
400,039
解法1:
class MyCircularQueue {
public:
MyCircularQueue(int k) : head(0), tail(-1), length(k), count(0) {
data.resize(k, 0);
}
bool enQueue(int value) {
if (count == length) return false;
tail++;
if (tail == length) tail = 0;
data[tail] = value;
count++;
return true;
}
bool deQueue() {
if (count == 0) return false;
head++;
if (head == length) head = 0;
count--;
return true;
}
int Front() {
if (isEmpty()) return -1;
return data[head];
}
int Rear() {
if (isEmpty()) return -1;
return data[tail];
}
bool isEmpty() {
return count == 0;
}
bool isFull() {
return count == length;
}
private:
vector<int> data;
int head, tail, length, count;
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/
本文介绍了一种遵循FIFO原则的环形队列(又称Ring Buffer)的设计与实现方法,通过C++代码示例展示了如何进行元素的插入、删除及队列状态的检查等操作。
5万+

被折叠的 条评论
为什么被折叠?



