895. Friend Request
Given an array Ages of length n, where the first i elements represent the age of the individual i. Find total number of friend requests sent by this n person. There are some requirements:
- if
Age(B) <= (1/2)Age(A) + 7,Awill not send a request toB. - if
Age(B) > Age(A),Awill not send a request toB. - if
Age(B) < 100 and Age(A) > 100,Awill not send a request toB. - If it does not satisfy 1,2,3, then
Awill send a request toB
Example
Example1
Input: Ages = [10,39,50]
Output: 1
Explanation:
Only people of age 50 will send friend requests to people of age 39.
Example2
Input: Ages = [101,79,102]
Output: 1
Explanation:
Only people of age 102 will send friend requests to people of age 101.
Notice
Ages.length <= 1000。- Everyone's age is greater than
0, no larger than150。
Input test data (one parameter per line)How to understand a testcase?
解法1:
这个题目的意思就是一大堆人互相选朋友,每个人都只选比自己小或一样年纪的,但是不能选太小的(底线是要> i / 2 + 7)。另外,101岁或以上的老人只跟100岁或以上的人交朋友,当然对方也要比自己小。
我的解法是先把每个年龄的个数存到distribution数组里面。然后我们可以看出1..100岁和101..150岁的情况不一样,应该分开处理。这样,时间复杂度就优化到O(150*150)以内了。
需要注意的几点:
1) 同一个年龄段彼此也要交朋狗友,reqCount += distribution[i] * (distribution[i] - 1);
2) 每个年龄段的每一个人的交朋友数addCount就是比他小的那些人的数目总和。而该年龄段每个人的情况都一样,所以addCount还要乘以distribution[i]。
3) 最容易忽视的一个地方就是非常小的小孩彼此之间不能交朋友,因为对方的年纪不满足>i/2+7。
class Solution {
public:
/**
* @param ages: The ages
* @return: The answer
*/
int friendRequest(vector<int> &ages) {
int n = ages.size();
vector<int> distribution(151, 0);
for (int i = 0; i < n; ++i) {
distribution[ages[i]]++;
}
int reqCount = 0;
for (int i = 1; i <= 100; ++i) {
if (distribution[i] == 0) continue;
int lowLimit = i / 2 + 7;
if (i > lowLimit) reqCount += distribution[i] * (distribution[i] - 1);
int addCount = 0;
for (int j = lowLimit + 1; j < i; ++j) {
if (distribution[j] == 0) continue;
addCount += distribution[j];
}
reqCount += addCount * distribution[i];
}
for (int i = 101; i <= 150; ++i) {
if (distribution[i] == 0) continue;
reqCount += distribution[i] * (distribution[i] - 1);
int addCount = 0;
for (int j = 100; j < i; ++j) {
if (distribution[j] == 0) continue;
addCount += distribution[j];
}
reqCount += addCount * distribution[i];
}
return reqCount;
}
};
解法2:解法1用presums数组优化到O(150)。
class Solution {
public:
/**
* @param ages: The ages
* @return: The answer
*/
int friendRequest(vector<int> &ages) {
int n = ages.size();
vector<int> distribution(151, 0);
for (int i = 0; i < n; ++i) {
distribution[ages[i]]++;
}
vector<int> presums(151, 0);
for (int i = 1; i < 151; ++i) {
presums[i] = presums[i - 1] + distribution[i];
}
int reqCount = 0;
for (int i = 1; i <= 100; ++i) {
if (distribution[i] == 0) continue;
int lowLimit = i / 2 + 7;
if (i > lowLimit) {
reqCount += distribution[i] * (distribution[i] - 1);
reqCount += (presums[i - 1] - presums[lowLimit]) * distribution[i];
}
}
for (int i = 101; i <= 150; ++i) {
if (distribution[i] == 0) continue;
reqCount += distribution[i] * (distribution[i] - 1);
reqCount += (presums[i - 1] - presums[99]) * distribution[i];
}
return reqCount;
}
};
解法3:下面这个是标准解法。不过时间复杂度是O(n*n)。如果n很大会比较慢。
class Solution {
public:
/**
* @param ages: The ages
* @return: The answer
*/
int friendRequest(vector<int> &ages) {
int ans = 0;
for(int i = 0; i < ages.size(); i++) {
for(int j = 0; j < ages.size(); j++) {
if(i == j) {
continue;
}
int A = ages[i];
int B = ages[j];
if(B <= A && B > A / 2 + 7 && !(B < 100 && A > 100)) {
ans++;
}
}
}
return ans;
}
};
本文深入解析了一种基于年龄条件的好友请求算法,探讨了不同年龄段人群间的交友规则,并提供了三种算法实现方案,包括直接计数法、前缀和优化法及标准遍历法,旨在优化算法效率。

被折叠的 条评论
为什么被折叠?



