203. Segment Tree Modify
For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in this node's interval.
Implement a modify function with three parameter root, index and value to change the node's value with [start, end] = [index, index] to the new given value. Make sure after this change, every node in segment tree still has the max attribute with the correct value.
Example
Example 1:
Input:"[1,4,max=3][1,2,max=2][3,4,max=3][1,1,max=2][2,2,max=1][3,3,max=0][4,4,max=3]",2,4
Output:"[1,4,max=4][1,2,max=4][3,4,max=3][1,1,max=2][2,2,max=4][3,3,max=0][4,4,max=3]"
Explanation:
For segment tree:
[1, 4, max=3]
/ \
[1, 2, max=2] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3]
if call modify(root, 2, 4), we can get:
[1, 4, max=4]
/ \
[1, 2, max=4] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=4], [3, 3, max=0], [4, 4, max=3]
Example 2:
Input:"[1,4,max=3][1,2,max=2][3,4,max=3][1,1,max=2][2,2,max=1][3,3,max=0][4,4,max=3]",4,0
Output:"[1,4,max=4][1,2,max=4][3,4,max=0][1,1,max=2][2,2,max=4][3,3,max=0][4,4,max=0]"
Explanation:
For segment tree:
[1, 4, max=3]
/ \
[1, 2, max=2] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3]
if call modify(root, 4, 0), we can get:
[1, 4, max=2]
/ \
[1, 2, max=2] [3, 4, max=0]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=0]
Challenge
Do it in O(h) time, h is the height of the segment tree.
Notice
We suggest you finish problem Segment Tree Build and Segment Tree Query first.
Input test data (one parameter per line)How to understand a testcase?
解法1:
/**
* Definition of SegmentTreeNode:
* class SegmentTreeNode {
* public:
* int start, end, max;
* SegmentTreeNode *left, *right;
* SegmentTreeNode(int start, int end, int max) {
* this->start = start;
* this->end = end;
* this->max = max;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of segment tree.
* @param index: index.
* @param value: value
* @return: nothing
*/
void modify(SegmentTreeNode * root, int index, int value) {
if (index == root->start && index == root->end) {
root->max = value;
return;
}
int mid = root->start + (root->end - root->start) / 2;
if (index <= mid) {
modify(root->left, index, value);
} else {
modify(root->right, index, value);
}
//root->max = max(root->max, value);
root->max = max(root->left->max, root->right->max);
return;
}
};
本文详细解析了段树(Segment Tree)中修改节点值的高效算法。通过递归方式更新节点值,并确保整个段树的最大值属性正确无误。文章通过实例展示了如何在O(h)时间复杂度内完成修改操作,其中h为段树的高度。

被折叠的 条评论
为什么被折叠?



