- Friends Of Appropriate Ages
Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ith person.
Person A will NOT friend request person B (B != A) if any of the following conditions are true:
age[B] <= 0.5 * age[A] + 7
age[B] > age[A]
age[B] > 100 && age[A] < 100
Otherwise, A will friend request B.
Note that if A requests B, B does not necessarily request A. Also, people will not friend request themselves.
How many total friend requests are made?
Example
Example 1:
Input: [16,16]
Output: 2
Explanation: 2 people friend request each other.
Example 2:
Input: [16,17,18]
Output: 2
Explanation: Friend requests are made 17 -> 16, 18 -> 17.
Example 3:
Input: [20,30,100,110,120]
Output: 3
Explanation: Friend requests are made 110 -> 100, 120 -> 110, 120 -> 100.
Notice
1 <= ages.length <= 20000.
1 <= ages[i] <= 120.
解法1:
注意这题的两个条件
age[B] > age[A]
age[B] > 100 && age[A] < 100
有冗余。用age[B] > age[A]一个条件就可以了。
我想的解法比较慢。时间复杂度O(n^2)。刚刚勉强过。
class Solution {
public:
/**
* @param ages:
* @return: nothing
*/
int numFriendRequests(vector<int> &ages) {
int n = ages.size();
sort(ages.begin(), ages.end());
int numFriends = 0;
for (int i = n - 1; i > 0; i--) {
int A = ages[i];
for (int j = i - 1; j >= 0; j--) {
int B = ages[j];
if (B <= A / 2 + 7) break;
numFriends++;
if (A == B) numFriends++;
}
}
return numFriends;
}
};
解法2:
参考的网上的答案。时间复杂度仅为O(K^2),K为unique的年龄个数。
class Solution {
public:
/**
* @param ages:
* @return: nothing
*/
int numFriendRequests(vector<int>& ages) {
unordered_map<int,int> mp; //age, freq
for (int &age: ages) mp[age]++;
int res = 0;
for (auto & a: mp)
for (auto & b: mp)
if (request(a.first, b.first)) res += a.second * (b.second - (a.first == b.first ? 1 : 0));
return res;
}
bool request(int a, int b) {
//return !(b <= 0.5 * a + 7 || b > a || (b > 100 && a < 100));
return !(b <= 0.5 * a + 7 || b > a);
}
};
本文探讨了在社交网络中,基于年龄限制的朋友请求算法。通过分析不同年龄组的人是否可以互相发送朋友请求的规则,提出了两种算法实现,一种时间复杂度为O(n^2),另一种更优的时间复杂度为O(K^2),K为独特年龄的数量。

被折叠的 条评论
为什么被折叠?



