Leetcode Unique Path II

本文探讨了在网格中寻找从左上角到右下角的唯一路径数量问题,并在此基础上增加了障碍物元素。通过动态规划的方法,给出了含障碍物情况下唯一路径数量的计算方案。

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.


跟之前的Unique Path的解法类似,动态规划大法。存在一点点区别,当obstacleGrid[i][j]为1时,dp[i][j] = 0;当obstacleGrid[i][j]为0时,其状态转移方程与前一题一模一样。


代码如下:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty())
            return 0;
        
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        
        int dp[m][n];
        memset(dp,0,sizeof(int)*m*n);
        dp[0][0] = 1;
        

    
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(obstacleGrid[i][j] == 1)
                {
                    dp[i][j] = 0;
                }
                else
                {
                    if(i-1 >= 0)
                        dp[i][j] += dp[i-1][j];
                    if(j-1 >= 0)
                        dp[i][j] += dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值