Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and
0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
跟之前的Unique Path的解法类似,动态规划大法。存在一点点区别,当obstacleGrid[i][j]为1时,dp[i][j] = 0;当obstacleGrid[i][j]为0时,其状态转移方程与前一题一模一样。
代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid.empty())
return 0;
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int dp[m][n];
memset(dp,0,sizeof(int)*m*n);
dp[0][0] = 1;
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
if(obstacleGrid[i][j] == 1)
{
dp[i][j] = 0;
}
else
{
if(i-1 >= 0)
dp[i][j] += dp[i-1][j];
if(j-1 >= 0)
dp[i][j] += dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
};
本文探讨了在网格中寻找从左上角到右下角的唯一路径数量问题,并在此基础上增加了障碍物元素。通过动态规划的方法,给出了含障碍物情况下唯一路径数量的计算方案。
376

被折叠的 条评论
为什么被折叠?



