定义:矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。
公式:
A=[[1,2,3],[4,5,6]]
B=[[1,4],[2,5],[3,6]]
def matxMultiply(A, B):
newB=list(map(list,zip(*B)))
A_B=[]
for i in range(len(A)):
row = []
for n in range(len(newB)):
num=0
for m in range(len(A[0])):
num+=A[i][m]*newB[n][m]
row.append(num)
A_B.append(row)
return A_B
if __name__=='__main__':
A = [[1, 2, 3], [4, 5, 6]]
B = [[1, 4], [2, 5], [3, 6]]
print(matxMultiply(A, B))
def matxMultiply(A, B):
A_B=[]
for i in range(len(A)):
row = []
for n in range(len(B[0])):
num=0
for m in range(len(A[0])):
num+=A[i][m]*B[m][n]
row.append(num)
A_B.append(row)
return A_B
if __name__=='__main__':
A = [[1, 2, 3], [4, 5, 6]]
B = [[1, 4], [2, 5], [3, 6]]
print(matxMultiply(A, B))