import caffe
# 1. 用deploy.prototxt和训练好的caffemodel初始化Classifier,并返回net
MODEL_FILE = r"D:/caffe/examples/mnist/lenet.prototxt"
PRETRAINED = r"D:/caffe/examples/mnist/lenet_iter_10000.caffemodel"
net = caffe.Classifier(model_file = MODEL_FILE, pretrained_file = PRETRAINED)
# 2. 读入待预测图片,并加入列表
input_image = []
input_image.append(caffe.io.load_image(r"D:/caffe/data/mnist/mnist_images/train/train_0_label_5.bmp", color=False))
input_image.append(caffe.io.load_image(r"D:/caffe/data/mnist/mnist_images/train/train_1_label_0.bmp", color=False))
# 3. 预测,predict函数会自动根据转Classifier的入参换图片格式
prediction = net.predict(input_image, oversample=False)
# 4. 输出结果,argmax是输出最大值
print("#1st#", str(prediction[0].argmax()), "; #2nd#", str(prediction[1].argmax()))
# prediction[i].flatten().argsort() #将预测从小到大排序
caffe下用python进行mnist预测
最新推荐文章于 2024-07-28 21:59:03 发布