零基础入门推荐系统Task1——赛题理解+Baseline
赛题简介
此次比赛是新闻推荐场景下的用户行为预测挑战赛, 该赛题是以新闻APP中的新闻推荐为背景, 目的是要求我们根据用户历史浏览点击新闻文章的数据信息预测用户未来的点击行为, 即用户的最后一次点击的新闻文章, 这道赛题的设计初衷是引导大家了解推荐系统中的一些业务背景, 解决实际问题。
数据简介
此次比赛是新闻推荐场景下的用户行为预测挑战赛, 该赛题是以新闻APP中的新闻推荐为背景, 目的是要求我们根据用户历史浏览点击新闻文章的数据信息预测用户未来的点击行为, 即用户的最后一次点击的新闻文章, 这道赛题的设计初衷是引导大家了解推荐系统中的一些业务背景, 解决实际问题。
赛题分析
根据赛题简介,我们首先要明确我们此次比赛的目标: 根据用户历史浏览点击新闻的数据信息预测用户最后一次点击的新闻文章。从这个目标上看, 会发现此次比赛和我们之前遇到的普通的结构化比赛不太一样, 主要有两点:
首先是目标上, 要预测最后一次点击的新闻文章,也就是我们给用户推荐的是新闻文章, 并不是像之前那种预测一个数或者预测数据哪一类那样的问题
数据上, 通过给出的数据我们会发现, 这种数据也不是我们之前遇到的那种特征+标签的数据,而是基于了真实的业务场景, 拿到的用户的点击日志
所以拿到这个题目,我们的思考方向就是结合我们的目标,把该预测问题转成一个监督学习的问题(特征+标签),然后我们才能进行ML,DL等建模预测。那么我们自然而然的就应该在心里会有这么几个问题:如何转成一个监督学习问题呢? 转成一个什么样的监督学习问题呢? 我们能利用的特征又有哪些呢? 又有哪些模型可以尝试呢? 此次面对数万级别的文章推荐,我们又有哪些策略呢?
当然这些问题不会在我们刚看到赛题之后就一下出来答案, 但是只要有了问题之后, 我们就能想办法解决问题了, 比如上面的第二个问题,转成一个什么样的监督学习问题? 由于我们是预测用户最后一次点击的新闻文章,从36万篇文章中预测某一篇的话我们首先可能会想到这可能是一个多分类的问题(36万类里面选1), 但是如此庞大的分类问题, 我们做起来可能比较困难, 那么能不能转化一下? 既然是要预测最后一次点击的文章, 那么如果我们能预测出某个用户最后一次对于某一篇文章会进行点击的概率, 是不是就间接性的解决了这个问题呢?概率最大的那篇文章不就是用户最后一次可能点击的新闻文章吗? 这样就把原问题变成了一个点击率预测的问题(用户, 文章) --> 点击的概率(软分类), 而这个问题, 就是我们所熟悉的监督学习领域分类问题了, 这样我们后面建模的时候, 对于模型的选择就基本上有大致方向了,比如最简单的逻辑回归模型。
这样, 我们对于该赛题的解决方案应该有了一个大致的解决思路,要先转成一个分类问题来做, 而分类的标签就是用户是否会点击某篇文章,分类问题的特征中会有用户和文章,我们要训练一个分类模型, 对某用户最后一次点击某篇文章的概率进行预测。 那么又会有几个问题:如何转成监督学习问题? 训练集和测试集怎么制作? 我们又能利用哪些特征? 我们又可以尝试哪些模型? 面对36万篇文章, 20多万用户的推荐, 我们又有哪些策略来缩减问题的规模?如何进行最后的预测?
读取采样或全量数据
由于用户数量较多,考虑到机器内存限制,线上测试可采样处理。若要验证模型的有效性或特征的有效性,可以只使用训练集。
# debug模式:从训练集中划出一部分数据来调试代码
def get_all_click_sample(data_path, sample_nums=10000):
"""
训练集中采样一部分数据调试
data_path: 原数据的存储路径
sample_nums: 采样数目(这里由于机器的内存限制,可以采样用户做)
"""
all_click = pd.read_csv(data_path + 'train_click_log.csv')
all_user_ids = all_click.user_id.unique()
sample_user_ids = np.random.choice(all_user_ids, size=sample_nums, replace=False)
all_click = all_click[all_click['user_id'].isin(sample_user_ids)]
all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
return all_click
# 读取点击数据,这里分成线上和线下,如果是为了获取线上提交结果应该讲测试集中的点击数据合并到总的数据中
# 如果是为了线下验证模型的有效性或者特征的有效性,可以只使用训练集
def get_all_click_df(data_path='./data_raw/', offline=True):
if offline:
all_click = pd.read_csv(data_path + 'train_click_log.csv')
else:
trn_click = pd.read_csv(data_path + 'train_click_log.csv')
tst_click = pd.read_csv(data_path + 'testA_click_log.csv')
all_click = trn_click.append(tst_click)
all_click = all_click.drop_duplicates((['user_id', 'click_article_id', 'click_timestamp']))
return all_click
获取 用户 - 文章 - 点击时间字典
# 根据点击时间获取用户的点击文章序列 user1: [(item1: time1), (item2: time2).....]
def get_user_item_time(click_df):
click_df = click_df.sort_values('click_timestamp')
def make_item_time_pair(df):
return list(zip(df['click_article_id'], df['click_timestamp']))
user_item_time_df = click_df.groupby('user_id')['click_article_id', 'click_timestamp'].apply(lambda x: make_item_time_pair(x))\
.reset_index().rename(columns={0: 'item_time_list'})
user_item_time_dict = dict(zip(user_item_time_df['user_id'], user_item_time_df['item_time_list']))
return user_item_time_dict
zip()是Python的一个内建函数,在官方的文档中,它的描述是这样的:
Make an iterator that aggregates elements from each of the iterables.Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator.
展示一下运行效果
a = ['a', 'b', 'c', 'd']
b = ['1', '2', '3', '4']
list(zip(a, b))
[('a', '1'), ('b', '2'), ('c', '3'), ('d', '4')]
获取点击最多的topk个文章
# 获取近期点击最多的文章
def get_item_topk_click(click_df, k):
topk_click = click_df['click_article_id'].value_counts().index[:k]
return topk_click
物品相似度计算
def itemcf_sim(df):
"""
文章与文章之间的相似性矩阵计算
:param df: 数据表
:item_created_time_dict: 文章创建时间的字典
return : 文章与文章的相似性矩阵
思路: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
"""
user_item_time_dict = get_user_itme_time(df)
# 计算物品相似度
i2i_sim = {}
item_cnt = defaultdict(int)
for user, item_time_list in tqdm(user_item_time_dict.items()):
# 在基于商品的协同过滤优化的时候可以考虑时间因素
for i, i_click_time in item_time_list:
item_cnt[i] += 1
i2i_sim.setdefault(i, {})
for j, j_click_time in item_time_list:
if (i == j):
continue
i2i_sim[i].setdefault(j, 0)
i2i_sim[i][j] += 1 / math.log(len(item_time_list) + 1)
i2i_sim_ = i2i_sim.copy()
for i, related_items in i2i_sim.items():
for j, wij in related_items.items():
i2i_sim_[i][j] = wij / math.sqrt(item_cnt[i] * item_cnt[j])
# 将得到的相似性矩阵保存到本地
pickle.dump(i2i_sim_, open(save_path + 'itemcf_i2i_sim.pkl', 'wb'))
return i2i_sim_
协同过滤算法
协同过滤(Collaborative Filtering)推荐算法是最经典、最常用的推荐算法。
所谓协同过滤,基本思想是根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品(基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐),一般是仅仅基于用户的行为数据(评价、购买、下载等),而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄,性别等)。目前应用比较广泛的协同过滤算法是基于邻域的方法,而这种方法主要有下面两种算法:
基于用户的协同过滤算法 (UserCF): 给用户推荐和他兴趣相似的其他用户喜欢的产品
基于物品的协同过滤算法 (ItemCF): 给用户推荐和他之前喜欢的物品相似的物品
不管是 UserCF 还是 ItemCF 算法,非常重要的步骤之一就是计算用户和用户或者物品和物品之间的相似度,所以下面先整理常用的相似性度量方法,然后再对每个算法的具体细节进行展开。
相似度度量方法
杰卡德 (Jaccard) 相似系数
这个是衡量两个集合的相似度一种指标。两个用户 u 和 v 交互商品交集的数量占这两个用户交互商品并集的数量的比例,称为两个集合的杰卡德相似系数,用符号 sim uv 表示,其中 N(u),N(v) 分别表示用户 u 和用户 v 交互商品的集合。
由于杰卡德相似系数一般无法反映具体用户的评分喜好信息,所以常用来评估用户是否会对某商品进行打分,而不是预估用户会对某商品打多少分。
余弦相似度
余弦相似度衡量了两个向量的夹角,夹角越小越相似。首先从集合的角度描述余弦相似度,相比于Jaccard 公式来说就是分母有差异,不是两个用户交互商品的并集的数量,而是两个用户分别交互的商品数量的乘积,公式如下:
皮尔逊相关系数
皮尔逊相关系数的公式与余弦相似度的计算公式非常的类似,首先对于上述的余弦相似度的计算公式写成求和的形式, 其中 rui ,rvi 分别表示用户 u 和用户 v 对商品 i 是否有交互 (或者具体的评分值),所以相比余弦相似度,皮尔逊相关系数通过使用用户的平均分对各独立评分进行修正,减小了用户评分偏置的影响。ru , rv 分别表示用户 u 和用户 v 交互的所有商品交互数量或者具体评分的平均值。
协同过滤算法改进
- 基础算法
图 1 为最简单的计算物品相关度的公式,分子为同时喜好 itemi 和 itemj 的用户数。 - 对热门物品的惩罚
图 1 存在一个问题,如果 item-j 是很热门的商品,导致很多喜欢 item-i 的用户都喜欢 item-j,这时wij 就会非常大。同样,几乎所有的物品都和 item-j 的相关度非常高,这显然是不合理的。所以图 2中分母通过引入 N(j) 来对 item-j 的热度进行惩罚。如果物品很热门,那么 N(j) 就会越大,对应的权重就会变小。 - 对热门物品的进一步惩罚
如果 item-j 极度热门,上面的算法还是不够的。举个例子,《Harry Potter》非常火,买任何一本书的人都会购买它,即使通过图 2 的方法对它进行了惩罚,但是《Harry Potter》仍然会获得很高的相似度。这就是推荐系统领域著名的 Harry Potter Problem。
如果需要进一步对热门物品惩罚,可以继续修改公式为如图 3 所示,通过调节参数 , 越大,惩罚力度越大,热门物品的相似度越低,整体结果的平均热门程度越低。 - 对活跃用户的惩罚
同样的,Item-based CF 也需要考虑活跃用户(即一个活跃用户(专门做刷单)可能买了非常多的物品)的影响,活跃用户对物品相似度的贡献应该小于不活跃用户。图 4 为集合了该权重的算法
setdefault
Python 字典 setdefault() 函数和 get()方法 类似, 如果键不存在于字典中,将会添加键并将值设为默认值。
setdefault 如果不存在会在原字典里添加一个 key:default_value 并返回 default_value。
get 找不到 key 的时候不会修改原字典,只返回 default_value。
若要修改字典 dic.setdefault(key,default_value) 等同于 dic[key] = dic.get(key,default_value)。
认识defaultdict
当使用普通的字典时,用法一般是dict={},添加元素的只需要dict[element] =value即,调用的时候也是如此,dict[element] = xxx,但前提是element字典里,如果不在字典里就会报错,如:
这时defaultdict就能排上用场了,defaultdict的作用是在于,当字典里的key不存在但被查找时,返回的不是keyError而是一个默认值。
itemcf的文章推荐
# 基于商品的召回i2i
def item_based_recommend(user_id, user_item_time_dict, i2i_sim, sim_item_topk, recall_item_num, item_topk_click):
"""
基于文章协同过滤的召回
:param user_id: 用户id
:param user_item_time_dict: 字典, 根据点击时间获取用户的点击文章序列 user1: [(item1: time1), (item2: time2).....]
:param i2i_sim: 字典,文章相似性矩阵
:param sim_item_topk: 整数, 选择与当前文章最相似的前k篇文章
:param recall_item_num: 整数, 最后的召回文章数量
:param item_topk_click: 列表,点击次数最多的文章列表,用户召回补全
return: 召回的文章列表 [(item1:score1), (item2: score2)...]
注意: 基于物品的协同过滤(详细请参考上一期推荐系统基础的组队学习), 在多路召回部分会加上关联规则的召回策略
"""
# 获取用户历史交互的文章
user_hist_items = user_item_time_dict[user_id]
user_hist_items_ = {user_id for user_id, _ in user_hist_items}
item_rank = {}
for loc, (i, click_time) in enumerate(user_hist_items):
for j, wij in sorted(i2i_sim[i].items(), key=lambda x: x[1], reverse=True)[:sim_item_topk]:
if j in user_hist_items_:
continue
item_rank.setdefault(j, 0)
item_rank[j] += wij
# 不足10个,用热门商品补全
if len(item_rank) < recall_item_num:
for i, item in enumerate(item_topk_click):
if item in item_rank.items(): # 填充的item应该不在原来的列表中
continue
item_rank[item] = - i - 100 # 随便给个负数就行
if len(item_rank) == recall_item_num:
break
item_rank = sorted(item_rank.items(), key=lambda x: x[1], reverse=True)[:recall_item_num]
return item_rank
给每个用户根据物品的协同过滤推荐文章
# 定义
user_recall_items_dict = collections.defaultdict(dict)
# 获取 用户 - 文章 - 点击时间的字典
user_item_time_dict = get_user_itme_time(all_click_df)
# 去取文章相似度
i2i_sim = pickle.load(open(save_path + 'itemcf_i2i_sim.pkl', 'rb'))
# 相似文章的数量
sim_item_topk = 10
# 召回文章数量
recall_item_num = 10
# 用户热度补全
item_topk_click = get_item_topk_click(all_click_df, k=50)
for user in tqdm(all_click_df['user_id'].unique()):
user_recall_items_dict[user] = item_based_recommend(user, user_item_time_dict, i2i_sim,
sim_item_topk, recall_item_num, item_topk_click)
召回字典转换成df
# 将字典的形式转换成df
user_item_score_list = []
for user, items in tqdm(user_recall_items_dict.items()):
for item, score in items:
user_item_score_list.append([user, item, score])
recall_df = pd.DataFrame(user_item_score_list, columns=['user_id', 'click_article_id', 'pred_score'])