监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。
1.一元线性回归模型
模型如下:


总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:
(1)就变量而言是线性的,Y的条件均值是 X的线性函数
(2)就参数而言是线性的,Y的条件均值是参数
的线性函数
线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。
2.参数估计——最小二乘法
对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中

本文深入探讨了一元线性回归模型,解析了其在监督学习中的应用,特别是在连续变量预测中的角色。文章详细介绍了线性回归的概念,包括模型定义、参数估计方法,特别是最小二乘法,并提供了Python实现示例。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



