AI一点通:向量数据库FAISS 平均延迟的测量

FAISS(Facebook AI Similarity Search)是一款强大的库,用于高效地进行相似性搜索和密集向量的聚类。它针对高性能和可扩展性进行了优化,是处理大规模数据集和计算最近邻选择的绝佳选择。

在这篇简短的博客中,我们将探讨如何在搭载Apple M1处理器的 Mac 上使用 FAISS 来测量搜索 1000 条记录的平均延迟。

设置环境

首先,您需要安装 FAISS 并确保您拥有合适的开发工具和库。您可以使用 pip 来安装 FAISS:

pip install faiss-cpu

接下来,我们通过导入必要的包和定义常量来设置我们的环境。

import faiss
import numpy as np
import time

# Define constants
num_vectors = 500000
dim = 20
num_searches = 1000
k = 100 # Number of nearest neighbors to retrieve

生成随机向量

FAISS 处理密集向量。这里,我们生成模拟数据集的随机向量:

# Create random vectors
np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值