OpenCV 提取水平或垂直线,过滤细 小杂质

灰度化 -> 二值化 -> 建立满足不同需求的结构元素 -> 开运算

若要去除垂直线,则建立水平长条状矩形结构元素

若要去除水平线,则建立垂直长条状矩形结构元素

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;



int main() {
    Mat src1, src2, gray_src, dst;
    src1 = imread("/Users/apple/Desktop/chars.png", IMREAD_COLOR);
    //src2 = imread("/Users/apple/Desktop/test2.jpg", IMREAD_COLOR);
    if (src1.empty()) { // if (!src.data())
        cout << "could not load image..." << endl;
        return -1;
    }
    imshow("input", src1);
    
    cvtColor(src1, gray_src, CV_BGR2GRAY);
    imshow("output_gray", gray_src);
    
    Mat binImg;
    adaptiveThreshold(~gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 25, -2);
    Mat kernel = getStructuringElement(MORPH_RECT, Size(4, 4), Point(-1, -1));
    //morphologyEx(binImg, binImg, MORPH
开发基于OpenCV和python语言等的图像处理程序,实现从图像中自动识别迷宫结构、规划最短路径,并可视化结果。预处理:将输入的迷宫图像转换为可分析的二值化结构。结构识别:自动检测迷宫的墙壁、通道、起点和终点。 结果可视化:在原图上标记路径并输出处理后的图像。输入:PNG格式,用imread读入,迷宫墙体为深色,通道为浅色。 输出:在原图上用绿色线条标记路径,线条最好要在路径的中央,起点用红色圆点标记,终点用蓝色圆点标记。用窗口输出结果。利用直线检测识别迷宫图像所在位置。 利用直线检测其他方式分析迷宫结构。 路径规划推荐使用BFS算法确保最短路径。不使用matplotlib,自动定位起点和终点,误差不超过1个单元格;正确二值化、降噪等,保留完整迷宫结构;找到最短路径,无死胡同错误转向;清晰标记路径、起点和终点,色彩对比度符合要求 自动识别起点(左下角起点)和终点(右上角):结构清晰,注释完整,异常保护合理,处理时间达标;迷宫外墙注意识别,不可走外墙以外的路径。有些迷宫墙壁较,可利用腐蚀膨胀来实现高识别精度,不要多余线条,不用sys库。将迷宫旋转 15°以内时,能正确矫正图形;背景中出现随机杂物时,仍能正确识别迷宫结构;当摄像头斜视 30°视角偏移时仍能矫正并识别。
最新发布
07-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值