描述:给定一个排序的整数数组(升序)和一个要查找的整数target
,用O(logn)
的时间查找到target第一次出现的下标(从0开始),如果target不存在于数组中,返回-1
。
样例:在数组 [1, 2, 3, 3, 4, 5, 10]
中二分查找3
,返回2
。以及测试用例:a={1,4,4,5,7,7,8,9,9,10}
题很简单但是由于这个道题需要返回target第一次出现的下标,一开始将key = 0,然后如果有和target相等的值就将下标赋值给key,最后来判断key是否为0,如果是则返回1,如果不是则返回下标。
很明显当数组中第一个值就是target时这个解法就有问题了。例如样例中寻找 target=1;
后来参考别人的代码,发现可以把找到的target值赋值给nums[0],同时将下标mid赋值给key,如果num[0]的值等于target时,就返回key, 否则返回0;
public int binarySearch(int[] nums, int target) {
// write your code here
if (nums == null || nums.length == 0) {
return -1;
}
int hight = nums.length-1;
int low = 0;
int mid = 0;
int key = 0;
while(low <= hight){
mid = (low + hight)/2; //之前粗心没有除2然后竟然也过
if(nums[mid] > target){
hight = mid-1;
}
else if(nums[mid] < target){
low = mid + 1;
}
else{
nums[0] = nums[mid];
key = mid;
hight = mid -1;
}
}
if(nums[0] == target)
return key;
return -1;
}
在计算数组的中间位置时,为什么更喜欢start+(end-start)/2而不是(start+end)/2?
https://cloud.tencent.com/developer/ask/29546
有三个原因。
首先,start + (end - start) / 2
不会溢出1。
int *start = ..., *end = ...;
int *mid = start + (end - start) / 2; // works as expected
int *mid = (start + end) / 2; // type error, won't compile
其次,start + (end - start) / 2
不会溢出start and end
int start = 0x7ffffffe, end = 0x7fffffff;
int mid = start + (end - start) / 2; // works as expected
int mid = (start + end) / 2; // overflow... undefined
只要使用 end >= start
...
unsigned start = 0xfffffffeu, end = 0xffffffffu;
unsigned mid = start + (end - start) / 2; // works as expected
unsigned mid = (start + end) / 2; // mid = 0x7ffffffe
最后 start 原素
int start = -3, end = 0;
int mid = start + (end - start) / 2; // -2, closer to start
int mid = (start + end) / 2; // -1, surprise!