[Array]485. Max Consecutive Ones

本文介绍一种简单有效的算法来统计01数组中最长连续1的个数。通过遍历数组并计数,该算法能高效处理各种情况,包括边界条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

题目分析:

      很显然题目的要求是让程序分析一个01数组中连续出现最多1的个数。那么简单的方法就是以遍历整个数组的形式统计出现最多的1的个数。

关键变量:

      count:用于统计每组连续1的个数;

      MAX:用于统计count的最大值并在函数尾返回。

代码完成:

要点:

      ①主干思路为遍历到1开始统计,遍历到0结束统计并处理统计结果;

      ②难点为某些极端情况的考量。一个是如果数组最后一个数为1,那么就会失去统计结束的标志导致程序错误,解决方法为单独加入对遍历下标的判断,若出现遍历到数组末尾的情况也视为该组统计结束;另一个极端情况是若数组为 [1] 的情况,这次算法中并没有这种情况并不是特例,所以直接略过。

这个程序运行后我点了调试运行之后显示特征点都一样为什么并没有自动触发检测而且我这个以后肯定是要它自动匹配好,自动质量检测的 # -*- coding: utf-8 -*- import sys import os import cv2 import numpy as np import math import time import logging import threading from collections import deque from PyQt5.QtWidgets import ( QApplication, QMainWindow, QPushButton, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QLabel, QFileDialog, QToolBox, QComboBox, QStatusBar, QGroupBox, QSlider, QDockWidget, QProgressDialog, QLineEdit, QRadioButton, QGridLayout, QSpinBox, QCheckBox, QDialog, QDialogButtonBox, QDoubleSpinBox, QProgressBar, ) from PyQt5.QtCore import QRect, Qt, QSettings, QThread, pyqtSignal, QTimer, QMetaObject, pyqtSlot,Q_ARG from PyQt5.QtGui import QImage, QPixmap from CamOperation_class import CameraOperation from MvCameraControl_class import * import ctypes from ctypes import cast, POINTER from datetime import datetime import skimage import platform from CameraParams_header import ( MV_GIGE_DEVICE, MV_USB_DEVICE, MV_GENTL_CAMERALINK_DEVICE, MV_GENTL_CXP_DEVICE, MV_GENTL_XOF_DEVICE ) # ===== 全局配置 ===== # 模板匹配参数 MATCH_THRESHOLD = 0.75 # 降低匹配置信度阈值以提高灵敏度 MIN_MATCH_COUNT = 10 # 最小匹配特征点数量 MIN_FRAME_INTERVAL = 0.1 # 最小检测间隔(秒) # ===== 全局变量 ===== current_sample_path = "" detection_history = [] isGrabbing = False isOpen = False obj_cam_operation = None frame_monitor_thread = None template_matcher_thread = None MV_OK = 0 MV_E_CALLORDER = -2147483647 # ==================== 优化后的质量检测算法 ==================== def enhanced_check_print_quality(sample_image_path, test_image, threshold=0.05): # 不再使用传感器数据调整阈值 adjusted_threshold = threshold try: sample_img_data = np.fromfile(sample_image_path, dtype=np.uint8) sample_image = cv2.imdecode(sample_img_data, cv2.IMREAD_GRAYSCALE) if sample_image is None: logging.error(f"无法解码样本图像: {sample_image_path}") return None, None, None except Exception as e: logging.exception(f"样本图像读取异常: {str(e)}") return None, None, None if len(test_image.shape) == 3: test_image_gray = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY) else: test_image_gray = test_image.copy() sample_image = cv2.GaussianBlur(sample_image, (5, 5), 0) test_image_gray = cv2.GaussianBlur(test_image_gray, (5, 5), 0) try: # 使用更鲁棒的SIFT特征检测器 sift = cv2.SIFT_create() keypoints1, descriptors1 = sift.detectAndCompute(sample_image, None) keypoints2, descriptors2 = sift.detectAndCompute(test_image_gray, None) if descriptors1 is None or descriptors2 is None: logging.warning("无法提取特征描述符,跳过配准") aligned_sample = sample_image else: # 使用FLANN匹配器提高匹配精度 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(descriptors1, descriptors2, k=2) # 应用Lowe's比率测试筛选优质匹配 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) if len(good_matches) > MIN_MATCH_COUNT: src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) if H is not None: aligned_sample = cv2.warpPerspective( sample_image, H, (test_image_gray.shape[1], test_image_gray.shape[0]) ) logging.info("图像配准成功,使用配准后样本") else: aligned_sample = sample_image logging.warning("无法计算单应性矩阵,使用原始样本") else: aligned_sample = sample_image logging.warning(f"特征点匹配不足({len(good_matches)}/{MIN_MATCH_COUNT}),跳过图像配准") except Exception as e: logging.error(f"图像配准失败: {str(e)}") aligned_sample = sample_image try: if aligned_sample.shape != test_image_gray.shape: test_image_gray = cv2.resize(test_image_gray, (aligned_sample.shape[1], aligned_sample.shape[0])) except Exception as e: logging.error(f"图像调整大小失败: {str(e)}") return None, None, None try: from skimage.metrics import structural_similarity as compare_ssim ssim_score, ssim_diff = compare_ssim( aligned_sample, test_image_gray, full=True, gaussian_weights=True, data_range=255 ) except ImportError: from skimage.measure import compare_ssim ssim_score, ssim_diff = compare_ssim( aligned_sample, test_image_gray, full=True, gaussian_weights=True ) except Exception as e: logging.error(f"SSIM计算失败: {str(e)}") abs_diff = cv2.absdiff(aligned_sample, test_image_gray) ssim_diff = abs_diff.astype(np.float32) / 255.0 ssim_score = 1.0 - np.mean(ssim_diff) ssim_diff = (1 - ssim_diff) * 255 abs_diff = cv2.absdiff(aligned_sample, test_image_gray) combined_diff = cv2.addWeighted(ssim_diff.astype(np.uint8), 0.7, abs_diff, 0.3, 0) _, thresholded = cv2.threshold(combined_diff, 30, 255, cv2.THRESH_BINARY) kernel = np.ones((3, 3), np.uint8) thresholded = cv2.morphologyEx(thresholded, cv2.MORPH_OPEN, kernel) threshold极光 = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel) diff_pixels = np.count_nonzero(thresholded) total_pixels = aligned_sample.size diff_ratio = diff_pixels / total_pixels is_qualified = diff_ratio <= adjusted_threshold marked_image = cv2.cvtColor(test_image_gray, cv2.COLOR_GRAY2BGR) marked_image[thresholded == 255] = [0, 0, 255] # 放大缺陷标记 scale_factor = 2.0 # 放大2倍 marked_image = cv2.resize(marked_image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) labels = skimage.measure.label(thresholded) properties = skimage.measure.regionprops(labels) for prop in properties: if prop.area > 50: y, x = prop.centroid # 根据放大比例调整坐标 x_scaled = int(x * scale_factor) y_scaled = int(y * scale_factor) cv2.putText(marked_image, f"Defect", (x_scaled, y_scaled), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * scale_factor, (0, 255, 255), int(scale_factor)) return is_qualified, diff_ratio, marked_image # ==================== 视觉触发的质量检测流程 ==================== def vision_controlled_check(capture_image=None, match_score=0.0): """修改为接受图像帧和匹配分数""" global current_sample_path, detection_history logging.info("视觉触发质量检测启动") # 如果没有提供图像,使用当前帧 if capture_image is None: frame = obj_cam_operation.get_current_frame() else: frame = capture_image if frame is None: QMessageBox.warning(mainWindow, "错误", "无法获取当前帧图像!", QMessageBox.Ok) return progress = QProgressDialog("正在检测...", "取消", 0, 100, mainWindow) progress.setWindowModality(Qt.WindowModal) progress.setValue(10) try: diff_threshold = mainWindow.sliderDiffThreshold.value() / 100.0 logging.info(f"使用差异度阈值: {diff_threshold}") progress.setValue(30) is_qualified, diff_ratio, marked_image = enhanced_check_print_quality( current_sample_path, frame, threshold=diff_threshold ) progress.setValue(70) if is_qualified is None: QMessageBox.critical(mainWindow, "检测错误", "检测失败,请极光日志", QMessageBox.Ok) return logging.info(f"检测结果: 合格={is_qualified}, 差异={diff_ratio}") progress.setValue(90) update_diff_display(diff_ratio, is_qualified) result_text = f"印花是否合格: {'合格' if is_qualified else '不合格'}\n差异占比: {diff_ratio*100:.2f}%\n阈值: {diff_threshold*100:.2f}%" QMessageBox.information(mainWindow, "检测结果", result_text, QMessageBox.Ok) if marked_image is not None: # 创建可调整大小的窗口 cv2.namedWindow("缺陷标记结果", cv2.WINDOW_NORMAL) cv2.resizeWindow("缺陷标记结果", 800, 600) # 初始大小 cv2.imshow("缺陷标记结果", marked_image) cv2.waitKey(0) cv2.destroyAllWindows() detection_result = { 'timestamp': datetime.now(), 'qualified': is_qualified, 'diff_ratio': diff_ratio, 'threshold': diff_threshold, 'trigger_type': 'vision' if capture_image else 'manual' } detection_history.append(detection_result) update_history_display() progress.setValue(100) except Exception as e: logging.exception("印花检测失败") QMessageBox.critical(mainWindow, "检测错误", f"检测过程中发生错误: {str(e)}", QMessageBox.Ok) finally: progress.close() # ==================== 相机操作函数 ==================== def open_device(): global deviceList, nSelCamIndex, obj_cam_operation, isOpen, frame_monitor_thread, mainWindow if isOpen: QMessageBox.warning(mainWindow, "Error", '相机已打开!', QMessageBox.Ok) return MV_E_CALLORDER nSelCamIndex = mainWindow.ComboDevices.currentIndex() if nSelCamIndex < 0: QMessageBox.warning(mainWindow, "Error", '请选择相机!', QMessageBox.Ok) return MV_E_CALLORDER # 创建相机控制对象 cam = MvCamera() # 初始化相机操作对象 obj_cam_operation = CameraOperation(cam, deviceList, nSelCamIndex) ret = obj_cam_operation.open_device() if 0 != ret: strError = "打开设备失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) isOpen = False else: set_continue_mode() get_param() isOpen = True enable_controls() # 创建并启动帧监控线程 frame_monitor_thread = FrameMonitorThread(obj_cam_operation) frame_monitor_thread.frame_status.connect(mainWindow.statusBar().showMessage) frame_monitor_thread.start() def start_grabbing(): global obj_cam_operation, isGrabbing, template_matcher_thread ret = obj_cam_operation.start_grabbing(mainWindow.widgetDisplay.winId()) if ret != 0: strError = "开始取流失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: isGrabbing = True enable_controls() # 等待第一帧到达 QThread.msleep(500) if not obj_cam_operation.is_frame_available(): QMessageBox.warning(mainWindow, "警告", "开始取流后未接收到帧,请检查相机连接!", QMessageBox.Ok) # 如果启用了自动检测,启动检测线程 if mainWindow.chkContinuousMatch.isChecked(): toggle_template_matching(True) def stop_grabbing(): global obj_cam_operation, isGrabbing, template_matcher_thread ret = obj_cam_operation.Stop_grabbing() if ret != 0: strError = "停止取流失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: isGrabbing = False enable_controls() # 停止模板匹配线程 if template_matcher_thread and template_matcher_thread.isRunning(): template_matcher_thread.stop() def close_device(): global isOpen, isGrabbing, obj_cam_operation, frame_monitor_thread, template_matcher_thread if frame_monitor_thread and frame_monitor_thread.isRunning(): frame_monitor_thread.stop() frame_monitor_thread.wait(2000) # 停止模板匹配线程 if template_matcher_thread and template_matcher_thread.isRunning(): template_matcher_thread.stop() template_matcher_thread.wait(2000) template_matcher_thread = None if isOpen and obj_cam_operation: obj_cam_operation.close_device() isOpen = False isGrabbing = False enable_controls() # ==================== 连续帧匹配检测器 ==================== class ContinuousFrameMatcher(QThread): frame_processed = pyqtSignal(np.ndarray, float, bool) # 处理后的帧, 匹配分数, 是否匹配 match_score_updated = pyqtSignal(float) # 匹配分数更新信号 match_success = pyqtSignal(np.ndarray, float) # 匹配成功信号 (帧, 匹配分数) trigger_activated = pyqtSignal(bool) # 新增信号:触发状态变化 def __init__(self, cam_operation, parent=None): super().__init__(parent) self.cam_operation = cam_operation self.running = True self.sample_template = None self.min_match_count = MIN_MATCH_COUNT self.match_threshold = MATCH_THRESHOLD self.sample_kp = None self.sample_des = None self.current_match_score = 0.0 self.last_match_time = 0 self.frame_counter = 0 self.consecutive_fail_count = 0 self.last_trigger_time = 0 # 上次触发时间 self.cool_down = 0.2 # 冷却时间(秒) self.trigger_threshold = 0.5 # 默认触发阈值 # 特征检测器 - 使用SIFT self.sift = cv2.SIFT_create() # 特征匹配器 - 使用FLANN提高匹配精度 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) self.flann = cv2.FlannBasedMatcher(index_params, search_params) # 性能监控 self.processing_times = deque(maxlen=100) self.frame_rates = deque(maxlen=100) # 黑白相机优化 self.clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) def calculate_match_score(self, good_matches): """更合理的匹配分数计算方法""" if not good_matches: return 0.0 # 使用匹配质量(距离的倒数)计算分数 total_quality = 0.0 for match in good_matches: # 避免除零错误 distance = max(match.distance, 1e-5) total_quality += 1.0 / distance # 归一化处理 max_quality = len(good_matches) * (1.0 / 0.01) # 假设最小距离0.01 match_score = min(1.0, max(0.0, total_quality / max_quality)) return match_score def preprocess_image(self, image): """更保守的图像预处理""" if len(image.shape) == 2: # 已经是灰度图,直接返回 return image # 仅转换为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 可选:轻度直方图均衡化 gray = cv2.equalizeHist(gray) return gray def set_sample(self, sample_img): """设置标准样本并提取特征""" # 保存样本图像 self.sample_img = sample_img # 预处理增强特征 processed_sample = self.preprocess_image(sample_img) # 提取样本特征点 self.sample_kp, self.sample_des = self.sift.detectAndCompute(processed_sample, None) if self.sample_des is None or len(self.sample_kp) < 100: # 增加最小特征点要求 logging.warning(f"样本特征点不足({len(self.sample_kp)}个),需要至少100个") return False logging.info(f"样本特征提取成功: {len(self.sample_kp)}个关键点") return True def set_threshold(self, threshold): """更新匹配阈值""" self.match_threshold = max(0.0, min(1.0, threshold)) logging.info(f"更新匹配阈值: {self.match_threshold:.2f}") def set_trigger_threshold(self, threshold): """更新触发阈值""" self.trigger_threshold = max(0.0, min(1.0, threshold)) logging.info(f"更新触发阈值: {self.trigger_threshold:.2f}") def process_frame(self, frame): """处理帧:特征提取、匹配和可视化""" is_matched = False match_score = 0.0 processed_frame = frame.copy() # 检查是否已设置样本 if self.sample_kp is None or self.sample_des is None: return processed_frame, match_score, is_matched # 预处理当前帧 processed_frame = self.preprocess_image(frame) # 转换为灰度图像用于特征提取 gray_frame = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2GRAY) try: # 提取当前帧的特征点 kp, des = self.sift.detectAndCompute(gray_frame, None) # 即使特征点不足也继续处理 if des is None or len(kp) < 5: # 更新匹配分数为0 self.current_match_score = 0.0 self.match_score_updated.emit(0.0) return processed_frame, 0.0, False # 匹配特征点 matches = self.flann.knnMatch(self.sample_des, des, k=2) # 应用Lowe's比率测试 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) # 使用更科学的匹配分数计算方法 match_score = self.calculate_match_score(good_matches) # 添加调试日志 logging.debug(f"匹配结果: 样本特征点={len(self.sample_kp)}, " f"当前帧特征点={len(kp)}, " f"良好匹配={len(good_matches)}, " f"匹配分数={match_score:.4f}") # 判断是否匹配成功(用于UI显示) if len(good_matches) >= self.min_match_count and match_score >= self.match_threshold: is_matched = True # 在图像上绘制匹配结果 if len(gray_frame.shape) == 2: processed_frame = cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2BGR) # 绘制匹配点 processed_frame = cv2.drawMatches( self.sample_img, self.s极光, processed_frame, kp, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS ) # 在图像上显示匹配分数 cv2.putText(processed_frame, f"Match Score: {match_score:.2f}", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) # 更新当前匹配分数 self.current_match_score = match_score self.match_score_updated.emit(match_score) # 检查是否达到触发条件(50%以上)并且超过冷却时间 trigger_active = False current_time = time.time() if match_score >= self.trigger_threshold and (current_time - self.last_trigger_time) > self.cool_down: self.last_trigger_time = current_time trigger_active = True logging.info(f"匹配分数达到触发阈值! 分数: {match_score:.2f}, 触发质量检测") # 发出匹配成功信号 (传递当前帧) self.match_success.emit(frame.copy(), match_score) # 发送触发状态信号 self.trigger_activated.emit(trigger_active) except Exception as e: logging.error(f"帧处理错误: {str(e)}") return processed_frame, match_score, is_matched def run(self): """主处理循环 - 连续处理每一帧""" logging.info("连续帧匹配线程启动") self.last_match_time = time.time() self.consecutive_fail_count = 0 while self.running: start_time = time.time() # 检查相机状态 if not self.cam_operation or not self.cam_operation.is_grabbing: if self.consecutive_fail_count % 10 == 0: logging.debug("相机未取流,等待...") time.sleep(0.1) self.consecutive_fail_count += 1 continue # 获取当前帧 frame = self.cam_operation.get_current_frame() if frame is None: self.consecutive_fail_count += 1 if self.consecutive_fail_count % 10 == 0: logging.warning(f"连续{self.consecutive_fail_count}次获取帧失败") time.sleep(0.05) continue self.consecutive_fail_count = 0 try: # 处理帧 processed_frame, match_score, is_matched = self.process_frame(frame) # 发送处理结果 self.frame_processed.emit(processed_frame, match_score, is_matched) except Exception as e: logging.error(f"帧处理错误: {str(e)}") # 控制处理频率 processing_time = time.time() - start_time sleep_time = max(0.01, MIN_FRAME_INTERVAL - processing_time) time.sleep(sleep_time) logging.info("连续帧匹配线程退出") # ==================== 模板匹配控制函数 ==================== def toggle_template_matching(state): global template_matcher_thread, current_sample_path logging.debug(f"切换连续匹配状态: {state}") if state == Qt.Checked and isGrabbing: # 确保已设置样本 if not current_sample_path: logging.warning("尝试启动连续匹配但未设置样本") QMessageBox.warning(mainWindow, "错误", "请先设置标准样本", QMessageBox.Ok) mainWindow.chkContinuousMatch.setChecked(False) return if template_matcher_thread is None: logging.info("创建新的连续帧匹配线程") template_matcher_thread = ContinuousFrameMatcher(obj_cam_operation) template_matcher_thread.frame_processed.connect(update_frame_display) template_matcher_thread.match_score_updated.connect(update_match_score_display) template_matcher_thread.trigger_activated.connect( lambda active: mainWindow.update_trigger_indicator(active) ) # 正确连接匹配成功信号到质量检测函数 template_matcher_thread.match_success.connect( lambda frame, score: vision_controlled_check(frame, score) ) # 加载样本图像 sample_img = cv2.imread(current_sample_path) if sample_img is None: logging.error("无法加载标准样本图像") QMessageBox.warning(mainWindow, "错误", "无法加载标准样本图像", QMessageBox.Ok) mainWindow.chkContinuousMatch.setChecked(False) return if not template_matcher_thread.set_sample(sample_img): logging.warning("标准样本特征不足") QMessageBox.warning(mainWindow, "错误", "标准样本特征不足", QMessageBox.Ok) mainWindow.chkContinuousMatch.setChecked(False) return if not template_matcher_thread.isRunning(): logging.info("启动连续帧匹配线程") template_matcher_thread.start() elif template_matcher_thread and template_matcher_thread.isRunning(): logging.info("停止连续帧匹配线程") template_matcher_thread.stop() # 重置匹配分数显示 update_match_score_display(0.0) # 重置帧显示 if obj_cam_operation and obj_cam_operation.is_frame_available(): frame = obj_cam_operation.get_current_frame() if frame is not None: display_frame = frame.copy() # 添加状态信息 cv2.putText(display_frame, "Continuous Matching Disabled", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2) update_frame_display(display_frame, 0.0, False) # 添加类型转换函数 def numpy_to_qimage(np_array): """将 numpy 数组转换为 QImage""" if np_array is None: return QImage() height, width, channel = np_array.shape bytes_per_line = 3 * width # 确保数据是连续的 if not np_array.flags['C_CONTIGUOUS']: np_array = np.ascontiguousarray(np_array) # 转换 BGR 到 RGB rgb_image = cv2.cvtColor(np_array, cv2.COLOR_BGR2RGB) # 创建 QImage qimg = QImage( rgb_image.data, width, height, bytes_per_line, QImage.Format_RGB888 ) # 复制数据以避免内存问题 return qimg.copy() # 修改 update_frame_display 函数 def update_frame_display(frame, match_score, is_matched): """更新主显示窗口(线程安全)""" # 确保在GUI线程中执行 if QThread.currentThread() != QApplication.instance().thread(): # 转换为 QImage 再传递 qimg = numpy_to_qimage(frame) QMetaObject.invokeMethod( mainWindow, "updateDisplay", Qt.QueuedConnection, Q_ARG(QImage, qimg), Q_ARG(float, match_score), Q_ARG(bool, is_matched) ) return # 如果已经在主线程,直接调用主窗口的更新方法 mainWindow.updateDisplay(frame, match_score, is_matched) def update_match_score_display(score): """更新匹配分数显示""" # 将分数转换为百分比显示 score_percent = score * 100 mainWindow.lblMatchScoreValue.setText(f"{score_percent:.1f}%") # 根据分数设置颜色 if score > 0.8: # 高于80%显示绿色 color = "green" elif score > 0.6: # 60%-80%显示黄色 color = "orange" else: # 低于60%显示红色 color = "red" mainWindow.lblMatchScoreValue.setStyleSheet(f"color: {color}; font-weight: bold;") def update_diff_display(diff_ratio, is_qualified): mainWindow.lblCurrentDiff.setText(f"当前差异度: {diff_ratio*100:.2f}%") if is_qualified: mainWindow.lblDiffStatus.setText("状态: 合格") mainWindow.lblDiffStatus.setStyleSheet("color: green; font-size: 12px;") else: mainWindow.lblDiffStatus.setText("状态: 不合格") mainWindow.lblDiffStatus.setStyleSheet("color: red; font-size: 12px;") def update_diff_threshold(value): mainWindow.lblDiffValue.setText(f"{value}%") def update_sample_display(): global current_sample_path if current_sample_path: mainWindow.lblSamplePath.setText(f"当前样本: {os.path.basename(current_sample_path)}") mainWindow.lblSamplePath.setToolTip(current_sample_path) mainWindow.bnPreviewSample.setEnabled(True) else: mainWindow.lblSamplePath.setText("当前样本: 未设置样本") mainWindow.bnPreviewSample.setEnabled(False) def update_history_display(): global detection_history mainWindow.cbHistory.clear() for i, result in enumerate(detection_history[-10:]): timestamp = result['timestamp'].strftime("%H:%M:%S") status = "合格" if result['qualified'] else "不合格" ratio = f"{result['diff_ratio']*100:.2f}%" trigger = "视觉" if result['trigger_type'] == 'vision' else "手动" mainWindow.cbHistory.addItem(f"[{trigger} {timestamp}] {status} - 差异: {ratio}") def update_match_threshold(value): """更新匹配阈值显示并应用到匹配器""" global template_matcher_thread # 更新UI显示 if mainWindow: mainWindow.lblThresholdValue.setText(f"{value}%") # 如果匹配线程存在,更新其匹配阈值 if template_matcher_thread: # 转换为0-1范围的浮点数 threshold = value / 100.0 template_matcher_thread.set_threshold(threshold) logging.debug(f"更新匹配阈值: {threshold:.2f}") # 新增函数:保存当前帧 def save_current_frame(): if not isGrabbing: QMessageBox.warning(mainWindow, "错误", "请先开始取流并捕获图像!", QMessageBox.Ok) return frame = obj_cam_operation.get_current_frame() if frame is None: QMessageBox.warning(mainWindow, "无有效图像", "未捕获到有效图像,请检查相机状态!", QMessageBox.Ok) return settings = QSettings("ClothInspection", "CameraApp") last_dir = settings.value("last_save_dir", os.path.join(os.getcwd(), "captures")) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") default_filename = f"capture_{timestamp}" file_path, selected_filter = QFileDialog.getSaveFileName( mainWindow, "保存当前帧", os.path.join(last_dir, default_filename), "PNG Files (*.png);;BMP Files (*.bmp);;JPEG Files (*.jpg);;所有文件 (*)", options=QFileDialog.DontUseNativeDialog ) if not file_path: return # 确保文件扩展名正确 if not os.path.splitext(file_path)[1]: if "PNG" in selected_filter: file_path += ".png" elif "BMP" in selected_filter: file_path += ".bmp" elif "JPEG" in selected_filter or "JPG" in selected_filter: file_path += ".jpg" # 保存图像 try: if cv2.imwrite(file_path, frame): QMessageBox.information(mainWindow, "成功", f"当前帧已保存至:\n{file_path}", QMessageBox.Ok) else: raise Exception("OpenCV保存失败") except Exception as e: QMessageBox.critical(mainWindow, "保存错误", f"保存图像时发生错误:\n{str(e)}", QMessageBox.Ok) # ==================== 主窗口类 ==================== class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("布料印花检测系统 - 连续匹配版") self.resize(1200, 800) central_widget = QWidget() self.setCentralWidget(central_widget) main_layout = QVBoxLayout(central_widget) # 设备枚举区域 device_layout = QHBoxLayout() self.ComboDevices = QComboBox() self.bnEnum = QPushButton("枚举设备") self.bnOpen = QPushButton("打开设备") self.bnClose = QPushButton("关闭设备") device_layout.addWidget(self.ComboDevices) device_layout.addWidget(self.bnEnum) device_layout.addWidget(self.bnOpen) device_layout.addWidget(self.bnClose) main_layout.addLayout(device_layout) # 取流控制组 self.groupGrab = QGroupBox("取流控制") grab_layout = QHBoxLayout(self.groupGrab) self.bnStart = QPushButton("开始取流") self.bnStop = QPushButton("停止取流") self.radioContinueMode = QRadioButton("连续模式") self.radioTriggerMode = QRadioButton("触发模式") self.bnSoftwareTrigger = QPushButton("软触发") grab_layout.addWidget(self.bnStart) grab_layout.addWidget(self.bnStop) grab_layout.addWidget(self.radioContinueMode) grab_layout.addWidget(self.radioTriggerMode) grab_layout.addWidget(self.bnSoftwareTrigger) main_layout.addWidget(self.groupGrab) # 参数设置组 self.paramgroup = QGroupBox("相机参数") param_layout = QGridLayout(self.paramgroup) self.edtExposureTime = QLineEdit() self.edtGain = QLineEdit() self.edtFrameRate = QLineEdit() self.bnGetParam = QPushButton("获取参数") self.bnSetParam = QPushButton("设置参数") self.bnSaveImage = QPushButton("保存图像") param_layout.addWidget(QLabel("曝光时间:"), 0, 0) param_layout.addWidget(self.edtExposureTime, 0, 1) param_layout.addWidget(self.bnGetParam, 0, 2) param_layout.addWidget(QLabel("增益:"), 1, 0) param_layout.addWidget(self.edtGain, 1, 1) param_layout.addWidget(self.bnSetParam, 1, 2) param_layout.addWidget(QLabel("帧率:"), 2, 0) param_layout.addWidget(self.edtFrameRate, 2, 1) param_layout.addWidget(self.bnSaveImage, 2, 2) main_layout.addWidget(self.paramgroup) # 图像显示区域 self.widgetDisplay = QLabel() self.widgetDisplay.setMinimumSize(640, 480) self.widgetDisplay.setStyleSheet("background-color: black;") self.widgetDisplay.setAlignment(Qt.AlignCenter) self.widgetDisplay.setText("相机预览区域") main_layout.addWidget(self.widgetDisplay, 1) # 创建自定义UI组件 self.setup_custom_ui() # 添加阈值自适应定时器 self.threshold_timer = QTimer() self.threshold_timer.timeout.connect(self.auto_adjust_threshold) self.threshold_timer.start(2000) # 每2秒调整一次 def auto_adjust_threshold(self): """根据环境亮度自动调整匹配阈值""" if not obj_cam_operation or not isGrabbing: return # 获取当前帧 frame = obj_cam_operation.get_current_frame() if frame is None: return # 处理不同通道数的图像 if len(frame.shape) == 2 or frame.shape[2] == 1: # 已经是灰度图 gray = frame elif frame.shape[2] == 3: # 三通道彩色图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) elif frame.shape[2] == 4: # 四通道图(带alpha) gray = cv2.cvtColor(frame, cv2.COLOR_BGRA2GRAY) else: # 其他通道数,无法处理 logging.warning(f"无法处理的图像格式: {frame.shape}") return # 计算平均亮度 try: brightness = np.mean(gray) except Exception as e: logging.error(f"计算亮度失败: {str(e)}") return # 根据亮度动态调整阈值 (亮度低时降低阈值要求) if brightness < 50: # 暗环境 new_threshold = 40 # 40% elif brightness > 200: # 亮环境 new_threshold = 65 # 65% else: # 正常环境 new_threshold = 55 # 55% # 更新UI self.sliderThreshold.setValue(new_threshold) self.lblThresholdValue.setText(f"{new_threshold}%") # 更新匹配器阈值 update_match_threshold(new_threshold) # 状态栏显示调整信息 self.statusBar().showMessage(f"亮度: {brightness:.1f}, 自动调整阈值至: {new_threshold}%", 3000) def update_trigger_indicator(self, active): """更新触发指示灯状态""" if active: self.triggerIndicator.setStyleSheet("background-color: green; border-radius: 10px;") else: self.triggerIndicator.setStyleSheet("background-color: gray; border-radius: 10px;") def update_trigger_threshold(self, value): """更新触发阈值显示并应用到匹配器""" self.lblTriggerValue.setText(f"{value}%") threshold = value / 100.0 if template_matcher_thread: template_matcher_thread.set_trigger_threshold(threshold) def setup_custom_ui(self): # 工具栏 toolbar = self.addToolBar("检测工具") self.bnCheckPrint = QPushButton("手动检测") toolbar.addWidget(self.bnCheckPrint) # 添加分隔标签 toolbar.addWidget(QLabel("图像保存:")) self.bnSaveCurrentFrame = QPushButton("保存当前帧") toolbar.addWidget(self.bnSaveCurrentFrame) self.bnSaveSample = QPushButton("保存标准样本") toolbar.addWidget(self.bnSaveSample) self.bnPreviewSample = QPushButton("预览样本") toolbar.addWidget(self.bnPreviewSample) # 添加触发指示灯 self.triggerIndicator = QLabel() self.triggerIndicator.setFixedSize(20, 20) self.triggerIndicator.setStyleSheet("background-color: gray; border-radius: 10px;") toolbar.addWidget(QLabel("触发状态:")) toolbar.addWidget(self.triggerIndicator) # 历史记录 toolbar.addWidget(QLabel("历史记录:")) self.cbHistory = QComboBox() self.cbHistory.setMinimumWidth(300) toolbar.addWidget(self.cbHistory) # 状态栏样本路径 self.lblSamplePath = QLabel("当前样本: 未设置样本") self.statusBar().addPermanentWidget(self.lblSamplePath) # 右侧面板 right_panel = QWidget() right_layout = QVBoxLayout(right_panel) right_layout.setContentsMargins(10, 10, 10, 10) # 差异度调整组 diff_group = QGroupBox("差异度调整") diff_layout = QVBoxLayout(diff_group) self.lblDiffThreshold = QLabel("差异度阈值 (0-100%):") self.sliderDiffThreshold = QSlider(Qt.Horizontal) self.sliderDiffThreshold.setRange(0, 100) self.sliderDiffThreshold.setValue(5) self.lblDiffValue = QLabel("5%") self.lblCurrentDiff = QLabel("当前差异度: -") self.lblCurrentDiff.setStyleSheet("font-size: 14px; font-weight: bold;") self.lblDiffStatus = QLabel("状态: 未检测") self.lblDiffStatus.setStyleSheet("font-size: 12px;") diff_layout.addWidget(self.lblDiffThreshold) diff_layout.addWidget(self.sliderDiffThreshold) diff_layout.addWidget(self.lblDiffValue) diff_layout.addWidget(self.lblCurrentDiff) diff_layout.addWidget(self.lblDiffStatus) right_layout.addWidget(diff_group) # ===== 连续匹配面板 ===== match_group = QGroupBox("连续帧匹配") match_layout = QVBoxLayout(match_group) # 样本设置 sample_layout = QHBoxLayout() self.bnSetSample = QPushButton("设置标准样本") self.bnPreviewSample = QPushButton("预览样本") self.lblSampleStatus = QLabel("状态: 未设置样本") sample_layout.addWidget(self.bnSetSample) sample_layout.addWidget(self.bnPreviewSample) sample_layout.addWidget(self.lblSampleStatus) match_layout.addLayout(sample_layout) # 匹配参数 param_layout = QHBoxLayout() self.lblMatchThreshold = QLabel("匹配阈值:") self.sliderThreshold = QSlider(Qt.Horizontal) self.sliderThreshold.setRange(50, 100) self.sliderThreshold.setValue(75) # 降低默认阈值 self.lblThresholdValue = QLabel("75%") param_layout.addWidget(self.lblMatchThreshold) param_layout.addWidget(self.sliderThreshold) param_layout.addWidget(self.lblThresholdValue) match_layout.addLayout(param_layout) # 触发阈值调整 trigger_threshold_layout = QHBoxLayout() self.lblTriggerThreshold = QLabel("触发阈值(%):") self.sliderTriggerThreshold = QSlider(Qt.Horizontal) self.sliderTriggerThreshold.setRange(0, 100) self.sliderTriggerThreshold.setValue(50) # 默认50% self.lblTriggerValue = QLabel("50%") trigger_threshold_layout.addWidget(self.lblTriggerThreshold) trigger_threshold_layout.addWidget(self.sliderTriggerThreshold) trigger_threshold_layout.addWidget(self.lblTriggerValue) match_layout.addLayout(trigger_threshold_layout) # 匹配分数显示 match_score_layout = QHBoxLayout() self.lblMatchScore = QLabel("实时匹配分数:") self.lblMatchScoreValue = QLabel("0.0%") self.lblMatchScoreValue.setStyleSheet("font-weight: bold;") match_score_layout.addWidget(self.lblMatchScore) match_score_layout.addWidget(self.lblMatchScoreValue) match_layout.addLayout(match_score_layout) # 连续匹配开关 self.chkContinuousMatch = QCheckBox("启用连续帧匹配") self.chkContinuousMatch.setChecked(False) match_layout.addWidget(self.chkContinuousMatch) right_layout.addWidget(match_group) right_layout.addStretch(1) # 添加调试按钮 self.bnDebug = QPushButton("调试匹配") toolbar.addWidget(self.bnDebug) # 连接信号 self.bnDebug.clicked.connect(self.debug_matching) # 停靠窗口 dock = QDockWidget("检测控制面板", self) dock.setWidget(right_panel) dock.setFeatures(QDockWidget.DockWidgetMovable | QDockWidget.DockWidgetFloatable) self.addDockWidget(Qt.RightDockWidgetArea, dock) @pyqtSlot(QImage, float, bool) def updateDisplay(self, qimg, match_score, is_matched): """线程安全的显示更新方法(只接收 QImage)""" if qimg.isNull(): return # 创建QPixmap并缩放 pixmap = QPixmap.fromImage(qimg) scaled_pixmap = pixmap.scaled( self.widgetDisplay.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation ) # 更新显示 self.widgetDisplay.setPixmap(scaled_pixmap) self.widgetDisplay.setAlignment(Qt.AlignCenter) def closeEvent(self, event): logging.info("主窗口关闭,执行清理...") close_device() event.accept() def debug_matching(self): """保存当前帧和匹配结果用于调试""" global isGrabbing, current_sample_path, obj_cam_operation # 检查必要状态 if not isGrabbing: QMessageBox.warning(self, "错误", "请先开始相机取流!") return if not current_sample_path or not os.path.exists(current_sample_path): QMessageBox.warning(self, "错误", "请先设置有效的标准样本图像!") return try: # 获取当前帧 frame = obj_cam_operation.get_current_frame() if frame is None: QMessageBox.warning(self, "无有效图像", "未获取到有效帧") return # 创建调试目录 debug_dir = "debug_match" os.makedirs(debug_dir, exist_ok=True) # 保存当前帧 current_time = datetime.now().strftime("%Y%m%d_%H%M%S") frame_path = os.path.join(debug_dir, f"current_frame_{current_time}.png") cv2.imwrite(frame_path, frame) # 保存样本图像 sample_img = cv2.imread(current_sample_path) sample_path = os.path.join(debug_dir, f"sample_{os.path.basename(current_sample_path)}") cv2.imwrite(sample_path, sample_img) # 安全预处理:检查图像通道数 def safe_preprocess(img): """安全的图像预处理函数""" # 处理不同通道数的图像 if len(img.shape) == 2 or img.shape[2] == 1: # 已经是灰度图 return img elif img.shape[2] == 3: # 三通道彩色图 return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) elif img.shape[2] == 4: # 四通道图(带alpha) return cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY) else: # 其他通道数,返回原图 logging.warning(f"无法处理的图像格式: {img.shape}") return img # 应用安全预处理 if template_matcher_thread: processed_frame = template_matcher_thread.preprocess_image(frame) processed_sample = template_matcher_thread.preprocess_image(sample_img) else: processed_frame = safe_preprocess(frame) processed_sample = safe_preprocess(sample_img) # 提取特征点 sift = cv2.SIFT_create() kp1, des1 = sift.detectAndCompute(processed_sample, None) kp2, des2 = sift.detectAndCompute(processed_frame, None) # 绘制特征点 - 处理单通道图像 def draw_keypoints_safe(img, keypoints): """安全的特征点绘制函数""" if len(img.shape) == 2: # 单通道转三通道用于彩色绘制 return cv2.drawKeypoints( cv2.cvtColor(img, cv2.COLOR_GRAY2BGR), keypoints, None, color=(0, 255, 0) ) else: return cv2.drawKeypoints(img, keypoints, None, color=(0, 255, 0)) sample_with_kp = draw_keypoints_safe(processed_sample, kp1) frame_with_kp = draw_keypoints_safe(processed_frame, kp2) # 保存带特征点的图像 cv2.imwrite(os.path.join(debug_dir, "sample_keypoints.png"), sample_with_kp) cv2.imwrite(os.path.join(debug_dir, "frame_keypoints.png"), frame_with_kp) # 进行匹配(仅当有足够的特征点时) if des1 is not None and des2 is not None and len(des1) > 0 and len(des2) > 0: FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) # 绘制匹配结果 match_img = cv2.drawMatches( sample_img, kp1, frame, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS ) # 保存匹配结果 cv2.imwrite(os.path.join(debug_dir, "matches.png"), match_img) QMessageBox.information(self, "调试完成", f"调试文件已保存到: {debug_dir}\n" f"样本特征点: {len(kp1)}\n" f"当前帧特征点: {len(kp2)}\n" f"良好匹配数: {len(good_matches)}") else: QMessageBox.warning(self, "特征不足", f"无法进行匹配:\n" f"样本特征点: {len(kp1) if kp1 else 0}\n" f"当前帧特征点: {len(kp2) if kp2 else 0}") except Exception as e: logging.exception("调试匹配失败") QMessageBox.critical(self, "调试错误", f"调试过程中发生错误:\n{str(e)}") # ===== 辅助函数 ===== def ToHexStr(num): if not isinstance(num, int): try: num = int(num) except: return f"<非整数:{type(num)}>" chaDic = {10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f'} hexStr = "" if num < 0: num = num + 2 ** 32 while num >= 16: digit = num % 16 hexStr = chaDic.get(digit, str(digit)) + hexStr num //= 16 hexStr = chaDic.get(num, str(num)) + hexStr return "0x" + hexStr def enum_devices(): global deviceList, obj_cam_operation n_layer_type = ( MV_GIGE_DEVICE | MV_USB_DEVICE | MV_GENTL_CAMERALINK_DEVICE | MV_GENTL_CXP_DEVICE | MV_GENTL_XOF_DEVICE ) # 创建设备列表 deviceList = MV_CC_DEVICE_INFO_LIST() # 枚举设备 ret = MvCamera.MV_CC_EnumDevices(n_layer_type, deviceList) if ret != MV_OK: error_msg = f"枚举设备失败! 错误码: 0x{ret:x}" logging.error(error_msg) QMessageBox.warning(mainWindow, "错误", error_msg, QMessageBox.Ok) return ret if deviceList.nDeviceNum == 0: QMessageBox.warning(mainWindow, "提示", "未找到任何设备", QMessageBox.Ok) return MV_OK logging.info(f"找到 {deviceList.nDeviceNum} 个设备") # 处理设备信息 devList = [] for i in range(deviceList.nDeviceNum): # 获取设备信息 mvcc_dev_info = ctypes.cast( deviceList.pDeviceInfo[i], ctypes.POINTER(MV_CC_DEVICE_INFO) ).contents # 根据设备类型提取信息 if mvcc_dev_info.nTLayerType == MV_GIGE_DEVICE: st_gige_info = mvcc_dev_info.SpecialInfo.stGigEInfo ip_addr = ( f"{(st_gige_info.nCurrentIp >> 24) & 0xFF}." f"{(st_gige_info.nCurrentIp >> 16) & 0xFF}." f"{(st_gige_info.nCurrentIp >> 8) & 0xFF}." f"{st_gige_info.nCurrentIp & 0xFF}" ) # 修复:将c_ubyte_Array_16转换为字节串再解码 user_defined_bytes = bytes(st_gige_info.chUserDefinedName) dev_name = f"GigE: {user_defined_bytes.decode('gbk', 'ignore')}" devList.append(f"[{i}] {dev_name} ({ip_addr})") elif mvcc_dev_info.nTLayerType == MV_USB_DEVICE: st_usb_info = mvcc_dev_info.SpecialInfo.stUsb3VInfo serial = bytes(st_usb_info.chSerialNumber).decode('ascii', 'ignore').rstrip('\x00') # 修复:同样处理用户自定义名称 user_defined_bytes = bytes(st_usb_info.chUserDefinedName) dev_name = f"USB: {user_defined_bytes.decode('gbk', 'ignore')}" devList.append(f"[{i}] {dev_name} (SN: {serial})") else: devList.append(f"[{i}] 未知设备类型: {mvcc_dev_info.nTLayerType}") # 更新UI mainWindow.ComboDevices.clear() mainWindow.ComboDevices.addItems(devList) if devList: mainWindow.ComboDevices.setCurrentIndex(0) mainWindow.statusBar().showMessage(f"找到 {deviceList.nDeviceNum} 个设备", 300) return MV_OK def set_continue_mode(): ret = obj_cam_operation.set_trigger_mode(False) if ret != 0: strError = "设置连续模式失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: mainWindow.radioContinueMode.setChecked(True) mainWindow.radioTriggerMode.setChecked(False) mainWindow.bnSoftwareTrigger.setEnabled(False) def set_software_trigger_mode(): ret = obj_cam_operation.set_trigger_mode(True) if ret != 0: strError = "设置触发模式失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) else: mainWindow.radioContinueMode.setChecked(False) mainWindow.radioTriggerMode.setChecked(True) mainWindow.bnSoftwareTrigger.setEnabled(isGrabbing) def trigger_once(): ret = obj_cam_operation.trigger_once() if ret != 0: strError = "软触发失败 ret:" + ToHexStr(ret) QMessageBox.warning(mainWindow, "Error", strError, QMessageBox.Ok) def save_sample_image(): global isGrabbing, obj_cam_operation, current_sample_path if not isGrabbing: QMessageBox.warning(mainWindow, "错误", "请先开始取流并捕获图像!", QMessageBox.Ok) return # 尝试捕获当前帧 frame = obj_cam_operation.capture_frame() if frame is None: QMessageBox.warning(mainWindow, "无有效图像", "未捕获到有效图像,请检查相机状态!", QMessageBox.Ok) return # 确保图像有效 if frame.size == 0 or frame.shape[0] == 0 or frame.shape[1] == 0: QMessageBox.warning(mainWindow, "无效图像", "捕获的图像无效,请检查相机设置!", QMessageBox.Ok) return settings = QSettings("ClothInspection", "CameraApp") last_dir = settings.value("last_save_dir", os.path.join(os.getcwd(), "captures")) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") default_filename = f"sample_{timestamp}" file_path, selected_filter = QFileDialog.getSaveFileName( mainWindow, "保存标准样本图像", os.path.join(last_dir, default_filename), "BMP Files (*.bmp);;PNG Files (*.png);;JPEG Files (*.jpg);;所有文件 (*)", options=QFileDialog.DontUseNativeDialog ) if not file_path: return # 确保文件扩展名正确 file_extension = os.path.splitext(file_path)[1].lower() if not file_extension: if "BMP" in selected_filter: file_path += ".bmp" elif "PNG" in selected_filter: file_path += ".png" elif "JPEG" in selected_filter or "JPG" in selected_filter: file_path += ".jpg" else: file_path += ".bmp" file_extension = os.path.splitext(file_path)[1].lower() # 创建目录(如果不存在) directory = os.path.dirname(file_path) if directory and not os.path.exists(directory): try: os.makedirs(directory, exist_ok=True) except OSError as e: QMessageBox.critical(mainWindow, "目录创建错误", f"无法创建目录 {directory}: {str(e)}", QMessageBox.Ok) return # 保存图像 try: # 使用OpenCV保存图像 if not cv2.imwrite(file_path, frame): raise Exception("OpenCV保存失败") # 更新状态 current_sample_path = file_path update_sample_display() settings.setValue("last_save_dir", os.path.dirname(file_path)) # 显示成功消息 QMessageBox.information(mainWindow, "成功", f"标准样本已保存至:\n{file_path}", QMessageBox.Ok) # 更新样本状态 mainWindow.lblSampleStatus.setText("状态: 样本已设置") mainWindow.lblSampleStatus.setStyleSheet("color: green;") except Exception as e: logging.error(f"保存图像失败: {str(e)}") QMessageBox.critical(mainWindow, "保存错误", f"保存图像时发生错误:\n{str(e)}", QMessageBox.Ok) def preview_sample(): global current_sample_path if not current_sample_path or not os.path.exists(current_sample_path): QMessageBox.warning(mainWindow, "错误", "请先设置有效的标准样本图像!", QMessageBox.Ok) return try: # 直接使用OpenCV加载图像 sample_img = cv2.imread(current_sample_path) if sample_img is None: raise Exception("无法加载图像") # 显示图像 cv2.namedWindow("标准样本预览", cv2.WINDOW_NORMAL) cv2.resizeWindow("标准样本预览", 800, 600) cv2.imshow("标准样本预览", sample_img) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as e: QMessageBox.warning(mainWindow, "错误", f"预览样本失败: {str(e)}", QMessageBox.Ok) def is_float(str): try: float(str) return True except ValueError: return False def get_param(): try: ret = obj_cam_operation.get_parameters() if ret != MV_OK: strError = "获取参数失败,错误码: " + ToHexStr(ret) QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) else: mainWindow.edtExposureTime.setText("{0:.2f}".format(obj_cam_operation.exposure_time)) mainWindow.edtGain.setText("{0:.2f}".format(obj_cam_operation.gain)) mainWindow.edtFrameRate.setText("{0:.2f}".format(obj_cam_operation.frame_rate)) except Exception as e: error_msg = f"获取参数时发生错误: {str(e)}" QMessageBox.critical(mainWindow, "严重错误", error_msg, QMessageBox.Ok) def set_param(): frame_rate = mainWindow.edtFrameRate.text() exposure = mainWindow.edtExposureTime.text() gain = mainWindow.edtGain.text() if not (is_float(frame_rate) and is_float(exposure) and is_float(gain)): strError = "设置参数失败: 参数必须是有效的浮点数" QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) return MV_E_PARAMETER try: ret = obj_cam_operation.set_param( frame_rate=float(frame_rate), exposure_time=float(exposure), gain=float(gain) ) if ret != MV_OK: strError = "设置参数失败,错误码: " + ToHexStr(ret) QMessageBox.warning(mainWindow, "错误", strError, QMessageBox.Ok) except Exception as e: error_msg = f"设置参数时发生错误: {str(e)}" QMessageBox.critical(mainWindow, "严重错误", error_msg, QMessageBox.Ok) def enable_controls(): global isGrabbing, isOpen mainWindow.groupGrab.setEnabled(isOpen) mainWindow.paramgroup.setEnabled(isOpen) mainWindow.bnOpen.setEnabled(not isOpen) mainWindow.bnClose.setEnabled(isOpen) mainWindow.bnStart.setEnabled(isOpen and (not isGrabbing)) mainWindow.bnStop.setEnabled(isOpen and isGrabbing) mainWindow.bnSoftwareTrigger.setEnabled(isGrabbing and mainWindow.radioTriggerMode.isChecked()) mainWindow.bnSaveImage.setEnabled(isOpen and isGrabbing) mainWindow.bnCheckPrint.setEnabled(isOpen and isGrabbing) mainWindow.bnSaveSample.setEnabled(isOpen and isGrabbing) mainWindow.bnPreviewSample.setEnabled(bool(current_sample_path)) mainWindow.bnSaveCurrentFrame.setEnabled(isOpen and isGrabbing) # 连续匹配控制 mainWindow.chkContinuousMatch.setEnabled(bool(current_sample_path) and isGrabbing) # ===== 相机帧监控线程 ===== class FrameMonitorThread(QThread): frame_status = pyqtSignal(str) # 用于发送状态消息的信号 def __init__(self, cam_operation): super().__init__() self.cam_operation = cam_operation self.running = True self.frame_count = 0 self.last_time = time.time() def run(self): """监控相机帧状态的主循环""" while self.running: try: if self.cam_operation and self.cam_operation.is_grabbing: # 获取帧统计信息 frame_info = self.get_frame_info() if frame_info: fps = frame_info.get('fps', 0) dropped = frame_info.get('dropped', 0) status = f"FPS: {fps:.1f} | 丢帧: {dropped}" self.frame_status.emit(status) else: self.frame_status.emit("取流中...") else: self.frame_status.emit("相机未取流") except Exception as e: self.frame_status.emit(f"监控错误: {str(e)}") # 每500ms检查一次 QThread.msleep(500) def stop(self): """停止监控线程""" self.running = False self.wait(1000) # 等待线程结束 def calculate_fps(self): """计算当前帧率""" current_time = time.time() elapsed = current_time - self.last_time if elapsed > 0: fps = self.frame_count / elapsed self.frame_count = 0 self.last_time = current_time return fps return 0 def get_frame_info(self): """获取帧信息""" try: # 更新帧计数 self.frame_count += 1 # 返回帧信息 return { 'fps': self.calculate_fps(), 'dropped': 0 # 实际应用中需要从相机获取真实丢帧数 } except Exception as e: logging.error(f"获取帧信息失败: {str(e)}") return None # ===== 主程序入口 ===== if __name__ == "__main__": # 配置日志系统 logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("cloth_inspection_continuous.log"), logging.StreamHandler() ] ) logging.info("布料印花检测系统(连续匹配版)启动") app = QApplication(sys.argv) mainWindow = MainWindow() # 信号连接 mainWindow.sliderThreshold.valueChanged.connect(update_match_threshold) mainWindow.sliderTriggerThreshold.valueChanged.connect( mainWindow.update_trigger_threshold ) # 其他信号连接 mainWindow.sliderDiffThreshold.valueChanged.connect(update_diff_threshold) mainWindow.bnCheckPrint.clicked.connect(lambda: vision_controlled_check(None)) mainWindow.bnSaveSample.clicked.connect(save_sample_image) mainWindow.bnPreviewSample.clicked.connect(preview_sample) mainWindow.bnEnum.clicked.connect(enum_devices) mainWindow.bnOpen.clicked.connect(open_device) mainWindow.bnClose.clicked.connect(close_device) mainWindow.bnStart.clicked.connect(start_grabbing) mainWindow.bnStop.clicked.connect(stop_grabbing) mainWindow.bnSoftwareTrigger.clicked.connect(trigger_once) mainWindow.radioTriggerMode.clicked.connect(set_software_trigger_mode) mainWindow.radioContinueMode.clicked.connect(set_continue_mode) mainWindow.bnGetParam.clicked.connect(get_param) mainWindow.bnSetParam.clicked.connect(set_param) mainWindow.bnSaveImage.clicked.connect(save_current_frame) mainWindow.bnSaveCurrentFrame.clicked.connect(save_current_frame) # 连续匹配信号连接 mainWindow.sliderThreshold.valueChanged.connect(update_match_score_display) mainWindow.chkContinuousMatch.stateChanged.connect(toggle_template_matching) mainWindow.show() app.exec_() close_device() sys.exit()
07-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值