GradNorm

GradNorm:多任务学习梯度平衡







不同任务loss梯度的量级不同,造成有的task在梯度反向传播中占主导地位,模型过分学习该任务而忽视其它任务。此外,不同任务收敛速度不一致的,可能导致有些任务还处于欠拟合,可有些任务已经过拟合了。由于各任务在训练过程中自己的梯度量级和收敛速度也是动态变化的,所以很显然这样定值的w做并没有很好的解决问题。作者提出了一种可以动态调整loss的w的算法——GradNorm

动态调整任务损失权重,通过学习每个任务的权重(在 loss 前乘以),使得各任务训练速率(loss 下降速率)保持平衡,从而缓解某些任务支配整个训练的问题。







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值