caffe中mnist中 lenet_train_test.prototxt和lenet.prototxt(deploy文件)区别

本文介绍了使用LeNet网络对MNIST手写数字数据集进行训练及预测的过程。对比了训练与部署文件的区别,包括去除测试阶段代码、修改输入数据方式及调整最后一层网络结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参照 http://blog.youkuaiyun.com/cham_3/article/details/52682479

http://blog.youkuaiyun.com/l18930738887/article/details/54898016

跑了下mnist训练,和使用训练好的模型进行预测

两个文件都在examples/mnist 中, lenet_train_test.prototxt 文件是设置train、test的网络,deploy文件是分类测试加载的文件。

大体区别思路是网络配置文件会规定的详细一些,deploy文件只是告诉分类程序(mnist_classification.bin)网络结构是怎么样的,不需要反向计算,不需要计算误差


两个文件内容先发出来:

cat lenet_train_test.prototxt 

name: "LeNet"
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}



cat lenet.prototxt   

name: "LeNet"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "ip2"
  top: "prob"
}



区别:

1.首先删除TEST使用的部分,例如开始的输入数据test部分,

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_test_lmdb"                                                   
    batch_size: 100                                                                            
    backend: LMDB                                                                              
  }                                                                                            
}


最后的test精度部分

layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}


2. trian部分的输入数据部分修改,只需要告诉输入维度

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

改为

layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
}

shape: { dim: 64 dim: 1 dim: 28 dim: 28 }中第一个dim代表?,第二个dim代表channel个数1个(对于图片是RGB的,3通道就是3),第三第四个分别是width和height图片的。 


3. 原来的最后一层loss层改为pro层

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

A:将其中的SoftmaxWithLoss替换为Softmax 
B:删除其中的bottom:”label”行,因为测试时需要预测label而不是给你一个已知label。 
C:同时将最后一层loss层改为pro层 
因此改完之后最后一层就是这样的:

layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc8"
  top: "prob"
}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

这里的name: “prob”就是你在预测时读取的layer的name,一定要对应上


<think>好的,我现在需要帮助用户解决在运行Caffe训练模型时遇到的命令行参数或配置文件错误的问题。首先,我得回想一下Caffe的基本使用方法常见问题。用户提到的是solver prototxt文件的错误或配置问题,这可能涉及到路径设置、参数配置、依赖库是否正确安装等。 首先,用户可能是在执行训练命令时遇到了错误,比如找不到solver文件,或者参数格式不正确。常见的命令是`caffe train --solver=path/to/solver.prototxt`,用户需要确认路径是否正确,以及文件是否存在。如果路径中有空格或特殊字符,可能需要使用引号包裹路径。 接下来是solver文件的配置问题。solver.prototxt中的参数是否正确,比如网络模型路径net是否正确指向train_val.prototxt或者其他的网络定义文件。还有基础学习率base_lr是否合理,动量momentum是否在0到1之间,迭代次数max_iter是否设置过高等。此外,solver_mode是否正确,比如是使用GPU还是CPU,这需要用户确认自己的环境是否支持对应的模式,比如CUDAcuDNN是否正确安装。 然后要考虑GPU相关的问题。用户可能没有正确安装CUDA或cuDNN,或者没有在Makefile.config中启用GPU支持。如果用户试图使用GPU但编译时未开启,会导致运行错误。此外,GPU内存不足也可能导致问题,这时候需要减少batch_size或者更换更大显存的GPU。 数据路径是否正确也是一个常见问题。在train_val.prototxt中,数据层的source字段应该指向正确的训练测试数据集路径,比如LMDB或HDF5文件。如果路径错误,Caffe会报错找不到数据。同时,数据预处理参数如scale、mean_file或mirror设置是否正确,这些参数需要与数据集相匹配。 依赖库的问题也不能忽视。Caffe依赖ProtoBufferGLog等库,如果这些库未正确安装或版本不兼容,会导致运行时错误。用户需要检查安装步骤,确保所有依赖库都正确安装,并且版本符合Caffe的要求。 调试方法方面,建议用户使用GLOG_minloglevel=0来开启详细日志输出,这样可以查看更详细的错误信息。此外,逐步简化网络结构,比如先去掉复杂层,只保留基本结构,测试是否能运行,有助于定位问题所在。如果怀疑是GPU问题,可以尝试切换到CPU模式,通过设置solver_mode为CPU来排除GPU相关的问题。 最后,常见错误示例中,比如文件路径错误、GPU内存不足、参数类型错误等,用户可以根据这些示例逐一检查自己的配置。例如,solver.prototxt中的net路径是否正确,或者是否使用了错误的参数类型如将字符串赋值给需要整数的参数。 总结下来,解决步骤应该是先检查命令是否正确,路径是否存在;然后检查solver网络配置文件中的参数是否合理;接着确认GPU环境依赖库是否正确;最后通过日志简化网络来定位问题。同时,引用中提到Ubuntu14.04下CUDA 8.0cuDNN的安装问题,可能用户的环境配置有问题,需要确保这些依赖项正确安装。</think>### Caffe训练命令与配置文件错误排查指南 当使用Caffe训练模型时,若遇到`solver.prototxt`文件相关错误或配置问题,可按照以下步骤排查: --- #### 一、命令行格式验证 1. **基础命令格式** 标准训练命令应包含`solver`参数: ```bash caffe train --solver=path/to/solver.prototxt ``` - **路径检查**:确认`solver.prototxt`路径正确(建议使用绝对路径) - **引号包裹**:若路径含空格或特殊字符,需添加引号: ```bash caffe train --solver="/path/with space/solver.prototxt" ``` --- #### 二、Solver配置文件分析 `solver.prototxt`中需验证以下关键参数: 1. **网络路径** 参数`net`应指向有效的网络定义文件(如`train_val.prototxt`): ```protobuf net: "examples/mnist/lenet_train_test.prototxt" ``` - 检查文件是否存在及读写权限 2. **学习率与优化器** - `base_lr`(基础学习率):典型值范围$10^{-4}$到$10^{-2}$ - `momentum`(动量):需满足$0 < momentum < 1$(默认0.9) - `solver_type`:可选`SGD`/`Nesterov`/`Adam` 3. **设备模式** 检查`solver_mode`是否与硬件匹配: ```protobuf solver_mode: GPU # 需已安装CUDA且编译启用GPU支持 ``` --- #### 三、GPU相关配置检查 1. **CUDA/cuDNN安装验证** 运行`nvidia-smi`查看GPU状态,执行`nvcc --version`检查CUDA版本[^1] 2. **编译配置** 确认`Makefile.config`中已启用GPU: ```makefile USE_CUDNN := 1 CUDA_DIR := /usr/local/cuda-8.0 ``` 3. **内存不足处理** 若出现`Check failed: error == cudaSuccess (2 vs. 0) out of memory`: - 减小`batch_size` - 使用`caffe time`命令测算显存需求 --- #### 四、数据路径与预处理 在`train_val.prototxt`中检查数据层: ```protobuf layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true mean_file: "data/ilsvrc12/imagenet_mean.binaryproto" } data_param { source: "examples/mnist/mnist_train_lmdb" batch_size: 64 backend: LMDB } } ``` - 验证`source`路径是否正确 - 确认`mean_file`与数据匹配 - 检查`batch_size`是否超出显存容量 --- #### 五、依赖库问题排查 1. **ProtoBuffer版本** 运行`protoc --version`验证版本兼容性(Caffe需protobuf >= 2.6.1) 2. **GLog错误日志** 通过环境变量获取详细日志: ```bash GLOG_minloglevel=0 caffe train --solver=... 2>&1 | tee log.txt ``` --- #### 六、调试技巧 1. **最小化测试** 创建仅含输入全连接层的简化网络,逐步添加复杂模块 2. **CPU模式测试** 临时修改`solver.prototxt`: ```protobuf solver_mode: CPU ``` --- #### 常见错误示例 | 错误类型 | 典型表现 | 解决方案 | |---------|---------|---------| | 文件路径错误 | `Could not open file [...]` | 使用`ls -l`验证路径权限 | | GPU内存不足 | `out of memory` | 减小`batch_size`或简化网络 | | 参数类型错误 | `Expected bool, got 0.5` | 检查参数类型匹配性 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值