-Xms4g -Xmx4g -Xmn2g -Xss1024K
-XX:ParallelGCThreads=5
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
-XX:+UseCMSCompactAtFullCollection
-XX:CMSInitiatingOccupancyFraction=80
可以看到堆内存为4G,新生代和老年代均为2G,新生代采用ParNew收集器。
再通过命令 jmap -heap pid 查到:新生代的Eden区为1.6G,S0和S1区均为0.2G。
本次上线并未修改JVM相关的任何参数,同时我们服务的请求量基本和往常持平。因此猜测:此问题大概率和上线的代码相关。
检查代码
再回到YGC的原理来思考这个问题,一次YGC的过程主要包括以下两个步骤:
1、从GC Root扫描对象,对存活对象进行标注
2、将存活对象复制到S1区或者晋升到Old区
根据下面的监控图可以看出:正常情况下,Survivor区的使用率一直维持在很低的水平(大概30M左右),但是上线后,Survivor区的使用率开始波动,最多的时候快占满0.2G了。而且,YGC耗时和Survivor区的使用率基本成正相关。因此,我们推测:应该是长生命周期的对象越来越多,导致标注和复制过程的耗时增加。
再回到服务的整体表现:上游流量并没有出现明显变化,正常情况下,核心接口的响应时间也基本在200ms以内,YGC的频率大概每8秒进行1次。
很显然,对于局部变量来说,在每次YGC后就能够马上被回收了。那为什么还会有如此多的对象在YGC后存活下来呢?
我们进一步将怀疑对象锁定在:程序的全局变量或者类静态变量上。但是diff了本次上线的代码,我们并未发现代码中有引入此类变量。
对dump的堆内存文件进行分析
代码排查没有进展后,我们开始从堆内存文件中寻找线索,使用MAT工具导入了第1步dump出来的堆文件后,然后通过Dominator Tree视图查看到了当前堆中的所有大对象。
立马发现NewOldMappingService这个类所占的空间很大,通过代码定位到:这个类位于第三方的client包中,由我们公司的商品团队提供,用于实现新旧类目转换(最近商品团队在对类目体系进行改造,为了兼容旧业务,需要进行新旧类目映射)。
进一步查看代码,发现这个类中存在大量的静态HashMap,用于缓存新旧类目转换时需要用到的各种数据,以减少RPC调用,提高转换性能。
原本以为,非常接近问题的真相了,但是深入排查发现:这个类的所有静态变量全部在类加载时就初始化完数据了,虽然会占到100多M的内存,但是之后基本不会再新增数据。并且,这个类早在3月份就上线使用了,client包的版本也一直没变过。
经过上面种种分析,这个类的静态HashMap会一直存活,经过多轮YGC后,最终晋升到老年代中,它不应该是YGC持续耗时过长的原因。因此,我们暂时排除了这个可疑点。
分析YGC处理Reference的耗时
团队对于YGC问题的排查经验很少,不知道再往下该如何分析了。基本扫光了网上可查到的所有案例,发现原因集中在这两类上:
1、对存活对象标注时间过长:比如重载了Object类的Finalize方法,导致标注Final Reference耗时过长;或者String.intern方法使用不当,导致YGC扫描StringTable时间过长。
2、长周期对象积累过多:比如本地缓存使用不当,积累了太多存活对象;或者锁竞争严重导致线程阻塞,局部变量的生命周期变长。
针对第1类问题,可以通过以下参数显示GC处理Reference的耗时-XX:+PrintReferenceGC。添加此参数后,可以看到不同类型的 reference 处理耗时都很短,因此又排除了此项因素。
再回到长周期对象进行分析
再往后,我们添加了各种GC参数试图寻找线索都没有结果,似乎要黔驴技穷,没有思路了。综合监控和种种分析来看:应该只有长周期对象才会引发我们这个问题。
折腾了好几个小时,最终峰回路转,一个小伙伴重新从MAT堆内存中找到了第二个怀疑点。
从上面的截图可以看到:大对象中排在第3位的ConfigService类进入了我们的视野,该类的一个ArrayList变量中竟然包含了270W个对象,而且大部分都是相同的元素。
ConfigService这个类在第三方Apollo的包中,不过源代码被公司架构部进行了二次改造,通过代码可以看出:问题出在了第11行,每次调用getConfig方法时都会往List中添加元素,并且未做去重处理。
我们的广告服务在apollo中存储了大量的广告策略配置,而且大部分请求都会调用ConfigService的getConfig方法来获取配置,因此会不断地往静态变量namespaces中添加新对象,从而引发此问题。
至此,整个问题终于水落石出了。这个BUG是因为架构部在对apollo client包进行定制化开发时不小心引入的,很显然没有经过仔细测试,并且刚好在我们上线前一天发布到了中央仓库中,而公司基础组件库的版本是通过super-pom方式统一维护的,业务无感知。
解决方案
为了快速验证YGC耗时过长是因为此问题导致的,我们在一台服务器上直接用旧版本的apollo client 包进行了替换,然后重启了服务,观察了将近20分钟,YGC恢复正常。
最后,我们通知架构部修复BUG,重新发布了super-pom,彻底解决了这个问题。
02 YGC的相关知识点总结
通过上面这个案例,可以看到YGC问题其实比较难排查。相比FGC或者OOM,YGC的日志很简单,只知道新生代内存的变化和耗时,同时dump出来的堆内存必须要仔细排查才行。
另外,如果不清楚YGC的流程,排查起来会更加困难。这里,我对YGC相关的知识点再做下梳理,方便大家更全面的理解YGC。
YGC的相关知识点总结
5个问题重新认识新生代
YGC 在新生代中进行,首先要清楚新生代的堆结构划分。新生代分为Eden区和两个Survivor区,其中Eden:from:to = 8:1:1 (比例可以通过参数 –XX:SurvivorRatio 来设定 ),这是最基本的认识。
为什么会有新生代?
如果不分代,所有对象全部在一个区域,每次GC都需要对全堆进行扫描,存在效率问题。分代后,可分别控制回收频率,并采用不同的回收算法,确保GC性能全局最优。
为什么新生代会采用复制算法?
新生代的对象朝生夕死,大约90%的新建对象可以被很快回收,复制算法成本低,同时还能保证空间没有碎片。虽然标记整理算法也可以保证没有碎片,但是由于新生代要清理的对象数量很大,将存活的对象整理到待清理对象之前,需要大量的移动操作,时间复杂度比复制算法高。
为什么新生代需要两个Survivor区?
为了节省空间考虑,如果采用传统的复制算法,只有一个Survivor区,则Survivor区大小需要等于Eden区大小,此时空间消耗是8 * 2,而两块Survivor可以保持新对象始终在Eden区创建,存活对象在Survivor之间转移即可,空间消耗是8+1+1,明显后者的空间利用率更高。
新生代的实际可用空间是多少?
YGC后,总有一块Survivor区是空闲的,因此新生代的可用内存空间是90%。在YGC的log中或者通过 jmap -heap pid 命令查看新生代的空间时,如果发现capacity只有90%,不要觉得奇怪。
Eden区是如何加速内存分配的?
HotSpot虚拟机使用了两种技术来加快内存分配。分别是bump-the-pointer和TLAB(Thread Local Allocation Buffers)。
由于Eden区是连续的,因此bump-the-pointer在对象创建时,只需要检查最后一个对象后面是否有足够的内存即可,从而加快内存分配速度。
TLAB技术是对于多线程而言的,在Eden中为每个线程分配一块区域,减少内存分配时的锁冲突,加快内存分配速度,提升吞吐量。
新生代的4种回收器
SerialGC(串行回收器),最古老的一种,单线程执行,适合单CPU场景。
ParNew(并行回收器),将串行回收器多线程化,适合多CPU场景,需要搭配老年代CMS回收器一起使用。
ParallelGC(并行回收器),和ParNew不同点在于它关注吞吐量,可设置期望的停顿时间,它在工作时会自动调整堆大小和其他参数。
G1(Garage-First回收器),JDK 9及以后版本的默认回收器,兼顾新生代和老年代,将堆拆成一系列Region,不要求内存块连续,新生代仍然是并行收集。
上述回收器均采用复制算法,都是独占式的,执行期间都会Stop The World.
YGC的触发时机
当Eden区空间不足时,就会触发YGC。结合新生代对象的内存分配看下详细过程:
1、新对象会先尝试在栈上分配,如果不行则尝试在TLAB分配,否则再看是否满足大对象条件要在老年代分配,最后才考虑在Eden区申请空间。
2、如果Eden区没有合适的空间,则触发YGC。
3、YGC时,对Eden区和From Survivor区的存活对象进行处理,如果满足动态年龄判断的条件或者To Survivor区空间不够则直接进入老年代,如果老年代空间也不够了,则会发生promotion failed,触发老年代的回收。否则将存活对象复制到To Survivor区。
4、此时Eden区和From Survivor区的剩余对象均为垃圾对象,可直接抹掉回收。
此外,老年代如果采用的是CMS回收器,为了减少CMS Remark阶段的耗时,也有可能会触发一次YGC,这里不作展开。
YGC的执行过程
YGC采用的复制算法,主要分成以下两个步骤:
1、查找GC Roots,将其引用的对象拷贝到S1区
2、递归遍历第1步的对象,拷贝其引用的对象到S1区或者晋升到Old区
上述整个过程都是需要暂停业务线程的(STW),不过ParNew等新生代回收器可以多线程并行执行,提高处理效率。
YGC通过可达性分析算法,从GC Root(可达对象的起点)开始向下搜索,标记出当前存活的对象,那么剩下未被标记的对象就是需要回收的对象。
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点!不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
为你打开新的学习之门!**
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!