大规模场景的语义感知重建与高效稀疏卷积技术
1. 语义与实例分割评估
在语义和实例分割任务中,我们将现有方法分为在线和离线两类。通过对ScanNetv2测试集的评估,我们的离线分割方法(Ours (OFF))在语义分割和实例分割方面都取得了较好的结果。以下是基于ScanNetV2测试集的每类语义分割结果(mIoU分数):
| Method | mIoU | Bookshelf | Bed | Bath | Cabinet | Curtain | Counter | Chair | Desk | Other furniture | Floor | Door | Picture | Sink | Shower | Fridge | Sofa | Wall | Toilet | Table | Window |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| FA [152] | 63.0 | 76.6 | 74.1 | 60.4 | 59.0 | 73.4 | 50.1 | 74.7 | 50.3 | 45.4 | 91.9 | 52.7 | 42.3 | 67.8 | 42.0 | 55.0 | 68.8 | 79.5 | 89.6 | 54.4 | 62.7 |
| SV [ 57] | 63.5 | 71.9 | 71.1 | 65.6 | 61.3 | 76.5 | 44.4 | 75.7 | 53.4 | 47
超级会员免费看
订阅专栏 解锁全文
2185

被折叠的 条评论
为什么被折叠?



