对于股票趋势预测,LSTM 算法比较适用。长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,把过往基于时间序列的数据集跟预测目标数据做规律探索,LSTM 会结合比较久以前的数据(long)和最近的数据(short-term)做出综合判断,发现内在规律,形成预测模型。
拿预测股票价格为例,我们可以把某只股票今天的收盘价作为预测目标,昨天开始一直往前 50 个交易日的收盘价格作为输入数据,也就是把前面 50个收盘价作为机器学习的 X 输入,今天的收盘价是 y 输出。按这样的规律依次往前准备 X 和 y 数据,例如昨天的收盘价是一个新的 y,昨天之前 50 个交易日的收盘价作为一个新的 X。根据你能收集到的价格数据,可以准备出大量的 X 和 y,作为训练 LSTM 算法的数据.

被折叠的 条评论
为什么被折叠?



