零基础进阶R语言与基因组学数据个性化分析与单细胞空间转录组!四大专题助你发顶刊

本文详细介绍了如何运用R语言进行单细胞分析,包括单细胞测序原理、数据分析流程、机器学习算法实现等。同时,讨论了空间转录组技术,如10x Visium,及其在组织结构和疾病研究中的应用。此外,还探讨了深度学习在基因组学中的应用,包括识别基序、预测基因表达和药物反应。最后,提到了比较基因组学的重要性,用于理解物种进化和基因功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

科研背景

细胞生物学的相关研究一直受限于数据的完整性和表型的完整性,对应激状态和稳态下的细胞区别观察不够充分。过去五年中,计算机视觉和语音识别领域通过对大量的无标签数据进行学习、建模,很好的解决了数据不足的问题。同样在最近的研究中,机器学习方法使用单细胞数据进行扰动建模也推动了细胞生物领域前进。对于生物学家来讲,无论研究基因、转录本、修饰、蛋白功能,都要频繁的进行人为干预,实现对感兴趣变量的正向或者反向改变,观察细胞表型的变化。整个过程需要对干预工具的构建、导入、实验观察,从而得出表型结论。扰动建模的目的就是想要通过数学模型的建立,通过对已有数据的分析、归纳和总结,对一个分子的功能在没有实验时做出预判,对于生物学家和药物研发者来讲,好的模型一定能够帮助加深对生物机制的理解,推动药物的研发进程

“单细胞多组学技术”和“空间转录组技术”先后在2019年和2020年被Nature Methods评为年度技术方法。时间和空间维度多维研究技术结合,将以全新研究思路出发,既能够获得单个细胞间异质性,又能获得细胞在组织空间上的结构位置信息,发现更多未知且精细化结果。总而言之,单细胞测序+空间转录组测序:优势互补,同时获得细胞类型群体,以及基因表达和细胞的空间位置信息。空间转录组能够定位和区分功能基因在特定组织区域内的活跃表达,为研究和诊断提供宝贵见解。10x Visium 的推出使空间转录组成为了新的研究热点,受到广大研究者的青睐,其不仅可以提供研究对象的转录组等数据信息,同时还能定位其在组织中的空间位置,这对于癌症发病机制、神经科学、发育生物学等众多领域的研究都有重要意义。

深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动挖掘数据潜在特征得以实现,过去10年,深度学习在计算机视觉、语音识别、自然语言处理领域取得了巨大成功。基因组学大数据与疾病表型间的复杂关系难以解析,运用深度学习挖掘多组学数据探索复杂疾病致病机制及药物反应机制将会极大的提升精准医学和转化医学的进度。,近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学等都在从事深度学习基因组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology 等知名国际顶刊上,为我们发表顶刊鉴定了基础。

比较基因组学(Comparative Genomics)利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。比较不同物种的整个基因组,增强对各个基因组功能及发育相关性的认识。比较不同物种的整个基因组,增强对各个基因组功能及发育相关性的认识。比较基因组学分析已成为生物学尤其是遗传学相关研究的重要手段。通过对生物基因组上遗传信息的挖掘与研究能够促进对不同生物具有的生物学形状下的遗传机制差异、性状演化历史等生物学问题进行深入的了解与研究。

一、机器学习单细胞分析应用专题

第一天

理论内容:

1.单细胞测序原理

2.单细胞测序基础

3.单细胞测序方法及数据

4.单细胞数据分析流程

实操内容

1.R语言基础

2.R(4.1.3)和Rstudio的安装

3.R包安装和环境搭建

4.数据结构和数据类型

5.R语言基本函数

6.数据下载

7.数据读入与输出

第二天

理论内容1.机器学习概述2.线性模型3.决策树4.支持向量机5.集成学习6.模型选择与性能优化实操内容1.决策树算法实现2.随机森林算法实现3.支持向量机(SVM)算法实现4.朴素贝叶斯算法实现5.Xgboost算法实现6.主成分分析PCA算法实现7.聚类算法实现8.DBSCAN算法实现

9.层次聚类算法实现

第三天

理论内容

1.多组学基础2.常用生物组学实验与分析方法3.常用组学数据库介绍4.批量处理组学数据5.生物功能分析6.基于转录组学的差异基因筛选,疾病预测7.基于差异基因联合多组学分析疾病发生机制8.组学数据可视化实操内容1.多组学基础2.常用生物组学实验与分析方法3.常用组学数据库介绍4.批量处理组学数据5.生物功能分析6.基于转录组学的差异基因筛选,疾病预测7.基于差异基因联合多组学分析疾病发生机制8.组学数据可视化

第四天

理论内容

1.单细胞分析中的常见机器学习方法2.降维聚类的机器学习算法3.分群注释的机器学习算法4.单细胞分析中常见的深度学习方法5.降维聚类的深度学习算法6.分群注释的深度学习算法实操内容1.Python语言基础2.python安装与开发环境的搭建3.基本数据类型组合数据类型4.分析环境搭建5.Jupyter notebook的使用6.函数、列表、元组、字典、集合7.控制结构、循环结构8.Numpy模块 ——矩阵的科学计算9.Matplotlib模块——数据处理与绘图10.Pandas模块——csv数据处理与分析11.Sklearn模块——机器学习模型基础软件包调用

第五天

理论部分

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值